
r

NWC TP 9349

Interactions Between the Flow Field,
JF Combustion, and Wave Motions

in Rocket Motors
by

F. E. C. Culick
Research Deparment

AUG 7  1972
R~v~dvced by

NATIONAL TECHNICAL LýU :
INFORMATION SERVICE . D.

U S DCP!,'~men1 of CoQ,-erce
S;,-gli-d VA =!51

CHINA LAKE. CALIFORNIA a JUNE 1972

Approved for public release; distribution unlimited.



KllSi WhIte Se• i a -
sic ofl UVcIA 0
INAP'O•rCED 0
JUSVA11r ........... -- ----

gJ ...... .. .......... . ........ ..............

w:IAnTIO3i/ATjv LAITT 3OM

ABSTRACT

e bility of small amp *tude osci ations in combustion
chambers is a zed for one- and imensional problems. In
addition to combus on and mass on at the boundaries, em.'--
sidual combustion a e pr ce of rticula tnin
the c1hamber are accounte or. The resu fo one-dimension-
al problem introduc eW con ibutions, to balance of acoustic
energy, assoc essentially bou processes act-
ing if t is a component of aco cal otion ralki to the

ce. These are incorporate n the ral thre imensional
problem, and are shown to a significan nfluence the pre-
dicted stability of mot s in a rocket motor.

NWC Technical Publication 5349

Published by ................................... Research Department
Collation ........... Cover, 39 leaves, DD Form 1473, abstract cards
First printing ............................... 215 unnumbered copies
Security classification ............................ UNCLASSIFIED

ii



UNCLASSIFIED
PS•¢ecuntv Classification

DOCUMENT CONTROL DATA - R & D
PCcutlty ý1.-la t'rfton of title. bd) of a.b-t-,t In-J .n.roeiD. .e nota.ti.n n•lt be enterrd h-n lthe oeral reptt i. eassi•.led)

2 RC04 MIA TiNG. ^CTIV#TY (Corporate author) Za. REPORT SECURITV CLASSIFvICATION

Naval Weapons Center_ UNCLASSIFIED

China Lake, California 93555 2b. GROUP

ME 3qEPOR- TiTx.IE

INTERACTIONS BIETWEEN THE FLOW FIELD, COMBUSTION, AND WAVE MOTIONS IN ROCKET MOTORS

CSCReS TRV NOTES (7hrp of report aod inctlu-iae dates)
A research1 report

S aU T..ORli$ (First a•rw.e. rmidde initial. last namr)

F. E. C. Culick

6 REPORT DATE 7a. TOTAL t40. OF PAGES lb. NO. OF REFS

June 1972 72 1 9
0a. CO.RTRACT OR GR.ftT NO. Ua. ORIGINATO*S hE•ORT NUMSERIS)

b. PRojEcT NO. Task UF 332-303 and NWC T1 5349
SSPO Task Assignment 73761

C. 11b. OTHER REPORT HO(S fAiy oallther abers that way be ASSicned
th:A repOrt)

d.

IC_ CISTRIbUTION STATEMENT

Approved for public release; distribution unlimited.

I-t SUPPLE•IENTARY NOTES I1. SPONSORING IILiTARY ACTIVITY

Naval Ordnance Systems Comarnd
Naval Material Coumand

Washington, D. C. 20360
1i A•STRACT

The stability of small amplitude oscillations in combustion chambers is
analyzed for one- and three-dimensional problems. In addition to combustion and
mass addition at the boundaries, residual combustion and the presence of particu-
late matter within the chamber are accounted for. The results for the one-
dimensional problem introduce new contributions, to the balance of acoustic energy,
associated essentially with boundary layer processes acting if there is a component
of acoustical motion parallel to the surface. These are incorporated in the general
three-dimensional problem, and are shown to have a significant influence on the pre-
dicted stability of motions in a rocket motor.

FOR ,(PAG147 1)
DD I 1F0RM 1 4 7 3  UNCLASSIFIED
S/N 0101-807.6801 Securitv Classification



UNCLASSIFIED
Security Classification

L- LINK A LINK S LINK C
KEY WORDS

ROLE WT ROL I, WT ROLE WT

Unsteady combustion
Flow fields
Oscillations

W

DD .... 1473 BACK) UNCLASSIFIED
(PAGE 2) /[ Security Classification



Naval Weapons Center
AN ACTIVITY OF THE NAVAL MATERIAL COMMAND
W. J. Moran, RADM, USN ................................... Commander
H. G. Wilson ........................................ Technical Director

FOREWORD

This report presents analyses of unsteady gas flow in solid
propellant combustors, with particular reference to axial mode
oscillations. Of primary concern are the effects of deviations
from one-dimensionality, and of the role of the mean flow in the
oscillatory behavior. The results provide a guide to design and
interpretation of laboratory combustor experiments, which, to-
gether with analysis, provide the means for valid calculation of
stability of new motor designs.

This work was sponsored jointly by the Naval Ordnance Systems
Command under Task UF 332-303 and the Strategic Systems Projects
Office under Task Assignment 73761, and was carried out during the
period November 1971 to March 1972.

This report is transmitted for information only and does not
represent the official views or final judgement of this Center.

Released by Under authority of
E. W. PRICE, Head HUGH W. HUNTER, Head
Aerothermochemistry Division Research Deparrment

7 June 1972

2-S½ -- S ° -- . .

-. ii. i



NWC TP 5349

CONTENTS

Nomenclature. . . . . . .............. . ......... v

1. Introduction .................. ........................... 1

2. One-Dimensional Problem ............... ...................... 4
2.1. Governing Equations ........................ 4
2.2. Linearized Perturbation Equations ....... ............. 6

3. Modified One-Dimensional Problem ........ .................. 9
3.1. Governing Equations ........... .................... 9
3.2. Linearized Perturbation Equations ...... ............. 9

4. Three-Dimensional Problem: Classical Acoustics .............. .. 11
4.1. Governing Equations ......... .................... 11
4.2. Linearized Perturbation Equations ................. .. 12

5. Calculation of the Complex Wave Number for the Linearized
Natural Modes ....... .. ..................... .. 14

5.1. One-Dimensional Problem ......... ................ .. 15
5.2. Modified One-Dimensional Problcm ..... ............. .20
5.3. Three-Dimensional Probltm ......... ............... .. 22

6. The Modified Three-Dimensional Prcblem ..... ............... .. 26

7. A Few Remarks on Interpretation ............ ................ .. 35

8. An Alternate Method of Computing the Growth Rate ............ .. 41
8.1. Summary of the Analysis of Reference 2 ..... .......... 41
8.2. The Equation of Balance for the Total Energy of

the Acoustic Field ............ ............... ... 45

9. A Simple Applikation to T-Burners ...... ................. .. 48

10. Application of the Modified Three-.Dimensional Result to Modes
in a Cylindrical Chamber and the Data of Brownlee
and Marble ............ ...................... .. 53

10.1. Coupling at the Burning Surface ...... ............. .56
10.2. Acoustics/Mean Flow Interactions at the Burning Surface. . 56
10.3. Influence of the Nozzle ....... .................. .. 56

AppendixA ....................... ............................. 62

References ................... ............................... .. 69

iv



L NWC TP 5349

NOMENCLATURE

Ab Admittance function for pressure coupling (Eq. 9.0)

a Speed of sound

Eq. 5.38

Cv Specific heat at constant volume

EN2  Eq. 5.35

E1 
2  Eq. 5.27

E E2 Eq. 5.14

e Internal energy per unit volume I C dT of gases

e Acoustic energy density (Eq. 5.2)
"a

2
e Stagnation internal energy, e + u /2

e Total internal energy of particulate matter (per unit volume of
P chamber)

e Stagnation internal energy of particulate matter, e + u 12
po p p

e Internal energy of gases entering at the surface
s

eN Time-averaged acoustic energy (Eq. 7.6)

6N Time-averaged acoustic energy (E'1. 7.4)

F Force of interaction between gases and particles (Eq. 2.8)

F Fq. 4.5

f Eq. 4.16

f1  Eq. 2.21

h Enthalpy of gas per unit volume, e + p/p; also Eq. 4.15

v



NWC TP 5349

h Stagnation enthalpy

hos Stagnation enthalpy of gases entering at the surface

h1  Eq. 2.19

hl1 Eqq 3.8

KN Time-averaged density of acoustic kinetic energy (Eq. 7.3)

k Complex wavenumber, k = (w-ia)/i

k Wavenumber for one-dimensional modes

kN Wavenumber for three-dimensional modes

L Length of chamber

4b Mach number of gases entering at burning surface, ub/a

m Vector mass flux, pu, of gases

mb Mass flux of gas entering at the burning surface

(p)rn. Mass flux of particulate matter entering at the burning surface

n Coordinate normal to the surface (Section 6)

n Unit normal vector, positive outward from the surface

Pl Eq. 2.17

P 1 Eq. 3.6

P' Eq. 4.2

PN Time-averaged potential energy (Eq. 7.3)

p Pressure

Sp• Mode shape for one-dimensional oscillation

SPI Mode shape for three-dimensional oscillations

Q Heat release, per unit volume, in homogeneous reactions

Qp Heat release, per unit volume of chamber, associated with
combustion of particulate matter (Eq. 2.12)

q Perimeter of chamber
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LZ

R Gas constant

Rb Response function for pressure coupling (Eq. 9.2)

r Radial coordinate

r Radius of cylindrical chamberc

MbS Area of burning surface at the end of a chamber
be

S Cross-sectional area of chamber
c

S Cross-sectional area of uniform chamber
co

Sbs Area 3f burning surface on the lateral surface of a chamber

s Coordinate parallel to the surface (Sectioa 6)

T Temperature

T0  Stagnation temijerature

AT Nonisentropic change of temperature

t Time

4.
u Velocity

u11 Velocity of gases entering the chamber, parallel to the surface

"ub Velocity of gases normal to the burning surface

u Velocity of particulate matter (mass-averaged)p

U Velocity of particulate matter entering the chamber parallel to
P11 the surface
u s Value of UJ for one-dimensional motions

u Value of U for one-dimensional motions

ps Pti

dV Volume element

w Combustion of particulate matter to gas, mass per unit volume

per second

z Coordinate along axis of the chamter

a Growth constant (positive for growth of waves)

y Ratio of specific heats

vii
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611 Eq. 6_19

6.L Eq. 6.20

8nll 6n• Values of 611 , 6.Lat entrance to the nozzle

Xrnn Roots of dJ (xmnr)/dr = 0 for r = rc

p Density

pp Density of particulate matter, mass per unit volume of chamber

4 Azimuthal angle

VL Gradient in direction normal to the surface

V11 Gradient parallel to the surface

A mt Eq. I0.-

( ) ' Fluctuation

( -) Mean value; also time-averaged value

( ) Amplitude of fluctuation, without time dependence

( )(r) Real part

( )(i) Imaginary part

( ) Time average (Section 8)
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[ 1. INTRODUCTION

It has long been recognized (Ref. 1-4, for example) that a proper description
of unstable motions in a rocket motor gust account for interactions between the
average and fluctuating flow fields. This is an important feature not generally
included in problems of classical acovatics. The associated exchange of energy
may be either a loss or a gain for small amplitude motions. Moreover, the con-
tribution3 may be large enough in some cases to be dominant influences for the
stability of oscillations.

SSince residual combustion and the presence of liquid and solid matevial sus-
pended in the gas phase are accounted for, the work covered here is valid for any
kind of combustion chamber. However, most of the discussion will be concerned
with unstable oscillations in solid propellant rocket motors; other applications
may be extracted as special cases. For a solid propellant imotor, the flow of mass
into the chamber has some particularly interesting conzequences. This has become
more apparent with recent work on "axial" or "longitudinal" waves in a chamber.
The main reason is that when there are wave motions parallel to the surface, the
mass entering normal to the surface undergoes inelastic proceesses of acceleration
to acquire the parallel motions. As a result of work on the axial modes, earlier
computations (Ref. 2 and 3) of acoustic modes have been reexamined; it appears
that contributions associated with the mass flux at the boundary were incompletely
taken into account.

Since the configurations of experimental burners and rocket motors quite
naturally fall into aeveral classes, the treatment here is also split. At the
present time, there is considerable interest in the axial modes, which are best
handled in a one-dimensional or modified one-dimensional formulation. However,
not only are there three-dimensional modes baving motions predominantly parallel
to the boundary, but also the axial modes may occur in very complicated configur-
ations. It is therefore necessary to have at hand tiue complete formulation for
three-dimensional problems.

The emphasis of the present work is mainly on linear problems, and particu-

larly those aspects related to the interactions between average and fluctuating

quantities. However, the important influences of particles in the flow, burning
within the volume of the chamber, and the exhaust nozzle are included. The
first part of this report (Sections 2--4) cover the formulation, including lin-
earization of three classes of problems: one-dimensional, modifie4 one-

-dimensional, and the familiar three-dimensional problem. The modified one-
dimensional problem takes into account, in the unperturbed problem, variations
of cross-sectional area along the axis; the result are therefore more accurate

I
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than those obtained from the purely one-dimensional formulation. A restriction
which should be particularly noted is that for all cases treated here, lineariza-
tion is carried out according to a limiting process discussed in Ref. 3; the
governing equations used throughout are valid only if the Mach number of the mean
flow is small. When the Mach number becomes "large" (i.e., greater than, roughly,
0.3), both the mode structure and frequency are affected strongly, in respects
which cannot be ignored.

For each of the three classes of problems, a wave equation is formed. Solu-
tion for the case of harmonic motions, covered in Section 5, produces formulas for
the complex wave number and hence the growth constant. Comparison of the formulas
for the modified one-dimensional and the three-dimensional problems shows signifi-
cant differences which lead to the principal new results of the present work.

1. If the interactions, or coupling, between the wave motions and surface
combustion are nonisentropic, then the formal representations of the
coupling are different for the two limiting cases; no acoustic motion
parallel to the surface, and all acoustic motion parallel to the
surface.

2. There are energy losses, for the waves in the chamber, when mass
flows in at an element of surface where there is a component of
acoustic motion parallel to the surface.

Incorporation of these features in the three-dimensional problem is accomplished
in Section 6, and leads to what is here referred to as the modified three-
dimensional problem. The physical interpretation of these new contributions to
the growth constant--that is, to the energy balance for acoustic waves-is
covered in Section 7.

Perhaps the most important practical consequence of this work is that it is
clear now that in general two functions must be known to characterize completely
the coupling between transient motions and combustion. These are conventionally
introduced as the admittance and response functions; other definitions are of
course possible. The physical origin of the need for two independent pieces of
information is that the coupling itself comprises two processes. One is mechani-
cal, which may be interpreted grossly as p-v work associated with velocity or
mass fluctuations of gas leaving the surface. The other is due to nonisentropic
temperature fluctuations at the edge of the combustion zone. Since the tempera-
ture fluctuations in the acoustic field are very closely isentropic--exactly so
within the analysis covered here-a nonisentropic fluctuation at the boundary will
generate a temperature or entropy wave which propagates through the chamber with
the speed of a mean flow. The energy required to generate such waves must ulti-
mately be accounted for in the energy balance of the acoustic waves within the
chamber.

Several years ago, Cantrell and Hart (Ref. 2) proposed that the growth con-
stant for acoustic waves in a chamber, with mean flow and combustion at the sur-
face, be computed by examining the total energy in the chamber. This is clearly
a sound idea, but care is required in the formulation. The analysis of Ref. 2 is

2
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very briefly summarized in Section 8 to show an important restriction: it is not
possible, without modifications which are presently unknown, to determine the
effects of mass and energy sources distributed within the volume of the chamber.
This seems to be a consequence of treating the total energy of the system. In
Section 8.2, the linearized equaCions are used to form an equation for the balance
of acoustic energy only. This produces directly a formula for the growth constant
which is identical with the earlier computation of the complex wave number.

The last two sections are concerned with applications of the analysis. Very
briefly in Section 9 a simple Oonfiguration of the T-burner is examined, to indi-
cate how experimentally the response and admittance functions might be determined.
Those functions must be known for the analyris of the stability of oscillations in
a motor, a subject treated in Section 10. The measurements of Brownlee and Marble
(Ref. 5), which have been discussed in previous works, are reexamined. A conclu-
sion of some recent work by Perry (Ref. 7) was that use of measurements taken in a
T-burner, and the analysis existing at that time leJ to significant differences

between the predicted and observed stability boundaries. Although it cannot be es-
tablished definitely at present, owing to the lack of sufficient measurements, it
appears that the new results obtained here may provide better agreement.

So far as the formal analysis of oscillations in a combustion chamber are con-
cerned, the most important subjects not covered here are the influence of high
Mach number, of the mean flow, and nonlinear behavior.

3
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2. ONE-DIMENSIONAL PROBLEM

This section is based largely on Ref. 4. The formulation is well-known in
fluid mechanics: a one-dimensional flow with mass addition at the lateral boun-
dary. What is new ultimately concerns mainly problems of waves in such a flow,
with the principal source of driving located in the combustion zone at the lateral
boundary.

2.1. GOVERNING EQUATIONS

The conservation equations are

mass 8 t
mgass (PS c +-• (PUS c = mb dq + WSc (2.1)}

(gas) at S (p)a S (PC (.1 )
mass 8 a
(particles) - U t (ppUpSt) = ,- wpSc (2.2)

momentum - Up P+PU)] +C i [(p U p2 ] + S c ]+s

-b- Ps~d~ ( 'P)dq (2.3)

energy t[-(Peo+p epo) 1+ a [(pueo+ppue )sp ]+- (PUS (2.4)

The first two terms on the right-hand side of Eq. 2.3 represent momentum added to
the flow when the axal speeds of the gases and particles entering fron the
lateral boundary are non-zero. The two terms on the right-hand side of Eq. 2.4
represent corresponding contributions to the energy balance. Heat released by
chemical reactions in the gas phase is represented by Q; hence, e and h represent
only thermal energy and enthalpy, respectively.

4
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In this section, variations of area will be treated as perturbations from the
case of a uniform chamber, so the equations for conservation of trass are written

dS
(pu) -t + (2.5)

at O m c dz

OP 0 _L f•rf bP)dq pu dSc (2.6)a '9z N P P bS c 7 P

The momentum equation can be rewritten in the form

I u + u +. = F- ÷Cy+ (2.7)

with

F p -P + P au (2.8)

S = + [ufmbdq+upjmblP)dq] + (u-u)w (2.9)

__ u r Sq~ spLbi*&pfllb (Pdq] (2.10)

Thus, F represents the force of the particles on the gas, averaged over the cross-
section, and a represents a momentum exchange between the chamber gases and two
sources of mass: ths flow-in at the lateral boundary, and the mass of gas pro-
duced by burning of particles. The influence of differences between the average
momenta of the channel flow and the masa added at the boundary is contained in U.

The energy equation can be written for the temperature $• th& usual way,
first by expanding the left-hand side and using the cowtinuity in Eq. 2.1 and
2.2.

De+ p + -. (pu=+ (hoseo)Imbdq + -L (eps-ep°) n P)dq
PD+P PDtS as S S c oPA b

dS

(eo-ePO Wp + Q S -dz

5
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Now remove the kinetic energies from eo and epo by subtracting u times Eq. 2.3
and up times Eq. 2.8:

p -T- + p T C u 1 pe) dq+e(P)dq
PV- -V z -z S dqs-0c pos

dS
+(u -u)F'+u(a-ý.) +(e o-eo) Wp- s- --- E + (Q+Q ) (2.11)

P PO00 pS CdzP

where Qp is the energy released by combustion of particles:

e Bae
p Epp -9t+PPUPpu azp -~ (2.12)

For reasons covered later, the total energy and enthalpy of the gases issu-
ing from the boundary will not be assumed equal to the average values in the
chamber. Thus, while epos = ep, 1 hos # ih and eos # eo. Define the difference
between eos and e. to be Aeo:

eo = e + Ae (2.13)

so that
hos - e0 = (e 0 + Ae 0 )+p/p- e0

= a f/y + Aeo 0

With the equation of state, p = pRT, for a perfect gas, Eq. 2.11 provides an
important equation for the pressure:

a--2k + Yp ýu + u = (a?-+P.To) bdq + [ý [(up-U)F+ u(o-l) _ -IPU ----E +

c v S dz

+ -1 L(e - L!2 )w + (Q+Q )l (2.14)

?.2. LINEARIZED PERTURMBATION EQUATIONS

For simplicity, the mean pressure and temperature are assumed ionstant. All
quantities are written as sums of mean values, (-), and fluctuations, ( )', and
squares of fluctuations are dropped. 2 Then Eq. 2.7 and 2.14 lead to

I The kinetic energy of the particles is assumed to be small compared with

the internal energy.
2 Throughout this report, the primed C)' quantities contain dependence on

time, while later quantities signified by ( ) do not. Thus, for linear harmonic
motions, the fluctuation of pressure is p' = exp (ia-kt).

6
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-au" +p' = "p- + (2.1+)

op' + -U, -a I du+

at +y-9- ly -u 7 1 (2.16)

where P1 is the perturbation of the right-hand side of Eq. 2.14,
S- C ( +AS)dz+

P 1  -L (a '+RAT 0 2dq+ [ [(u-U)F+u(C-j)]-j P2 dSC +C v Sc

2

C PT (2.17)
V

The common linearized problems encounted in motors are most conveniently
analyzed by working with the wave equation for pressure fluctuations. This is
constructed by differentiating Eq. 2.16 with respect to time and inserting Eq.
2.15 for Bu'/3t to give:

with 8z at 1(.8

2 a2ap

a '' 1pad '

with - - • C- a &l (2.19)=2 at --- (2.19)8z a a a

Solution to Eq. 2.18 will eventually require a boundary condition for p', set
according to Eq. 2.15,

S= -fl(2.20)

az 1
with

fl=-P"-u +• -•8 u') - F-'•).(2.21)

In order to-obtain quantitative results, the expressions for F', a', u', and

P' are required. What one uses for F' depends on the law of force between the
particles and the gas: Eq. 2.8 is merely the definition of F; the force of inter-
action is required in order to determine u and hence I and F'. That problem
will not be discussed here. On the other hand, F, and o a lesser extent U, are
central to later discussion. It is a straightforward matter to find a', and u':

1 [p ((P)dq])

u, (1(Us) mbdq + (U ndq] (2.23)

The terms
_u jndq , u. nP 'dq ( )W'

P p

7
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and similar terms in v' are dropped as higher order contributions. The reasons
are : mL and mb(P)' are of order 5, as shown by computations of the combustion pro-
cesses at the surface, and (U-ii ) is a small quantity because the particles may be
assumed, usually, to be sufficigntly small that in the steady state they very near-
ly follow the gas motions, qo that (U-%)W' is in practice a negligibly small term.

The terms 2

(u -u)F , u(m-ti) , (e -!
p PO 2'3

also produce fluctuations of higher order (see Ref. 4 for a discussion of the first
two) and may safely be ignored in linear problems. In the term a2 /y + Aeo, the
kinetic energy produces a second order term, and with a2 = yRT, one finds the per-
turbation

[(a2'+RAT )fx dq:P = VR(T+A.- )frn~dq+,yR(T'+aTi )f~h.dq (2.24)0 oD
It is assumed that the average temperature of the gas leaving the surface is equal
to the average chamber temperature, so f r 0, but differences in the fluctuations
will still be allowed; one then has for P1 :

P, = IR [Tj ldq+(T' +'-6-- ) dq - (p'u+pu') d)--
1 Sc MI V q dz

+R_[lý ýe l+(+t) (2.25)

The fluctuation T' is the isentropic value associated with acoustic waves in the
chamber, while AT' is a nonisentropic fluctuation associated with the unsteady
combustion processes (see Sections 6 and 8). This completes the preparations re-
quired for calculations of strictly one-dimensional problems.

8
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3. MODIFIED ONE-DIMENSIONAL PROBLEM

When calculations are based on the formulation of Section 2, variations of
area are treated as perturbations, a point which will become more apparent later
in Section 5.1. It is more accurate if the influence of nonuniform cross-section
can be accounted for in "zeroth order", and in certain practically interesting
situations this can be done without excessive difficulty. To do so requires only
relatively minor alterations of the formulation just covered. Formally, the
difference consists mainly in retaining the area Sc.on the left-hand side of the
governing equations.

3.1. GOVERNING EQUATIONS

The continuity equations for the gases and particles are retained in the
form in Eq. 2.1 and 2.2; the momentum in Eq. 2.2 is written (cf., Eq. 2.7):

PS auSaa+S .I = S (F-o+W) (3.1)Pc at + 0Zc +S c 8z 1)

Similarly, the energy equation 2.11 is written as:
S8OT uS2 8a

PCvSc- +PCv c +P2 (,Is)= -(-L-+ e)m 0 dq+Sc(u U)F+u(°-)c

+SC w p(e po-e )+(Q+Q )Sc . (3.2)

One then finds that, corresponding to Eq. 2.12, the equation for the pressure is

a PS P (US )+Us 2 = (a?- + Ra°• dq+-- Sc [(u -u)F+u(a_-)]v

3.2. LINEARIZED PERTURBATIO1' EQUATIONS

The perturbation equations for velocity and pressure are not'

P"t (ScU') +S = -p -(u'S(F + (3.4)

9
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a -a = -- ap

(P'S)+vP z (u'Sc) -US 8z-• - -(sc)+ScPj (3.5)

where ScP'1I is the fluctuation of

ScP = (a 2 +AT )fmbdq+ - S c(u-_u)F+u(_-.)] +

rk C C[e PO - )w + (Q+Q(36

Hence, the wave equation for the pressure fluctuations is found to be

-(S h (3.7)
c a

with

h [a2  [Sa(F'-+) + +- Sh Pl T2- (uu' )+, S z c 2fcl 2atSd
az c a a cdt,inS BPI

-- 8•u) c 1 1-P d) z -- Z at (3.8)

a

The associated boundary condition on p' is exactly (Eq. 2.20) still, since the
momentum equation is unchanged.

While F' is still given as the perturbation of the right-hand side of
Eq. 2.8, and a' is correctly given by Eq. 2.22, P'l1 differs from P' because
the term ypudInSc/dz in Eq. 2.15 does not appear in Eq. 3.6. Thus, P'I 1 is
given by

=il r--fr~dq+(yjRTt+RATI)~jj ,dq]4 dR- [(e'Wp4+e w', )+ (Q'+Q' )].(3. 9)
10S Cd+ T+ T) q _ P

10
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4. THREE-DIMENSIONAL PROBL&E: CLASSICAL ACOUSTICS

The analyses of Ref. 2 and 3 which are, so far as the discussion here is con-
cerned, the most general linear treatments availab•le, are based on modified forms
of classical acoustics theory. The principal modifications are due to the pres-
ence of a nonuniform mean flow. In Ref. 3, the calculations were based on inte-
grals, of time-averaged quantities, over the chamber and Lts boundary; the de-
velopments of Ref. 4 were founded on the differential equations. The final re-
sults, when comparable, agree exactly; but for present purposes, it iL preferable
to work with the differential equations. Comparisons of the two apprcaches will
arise in subsequent discussion.

4.1. GOVERNING EQUATIONS

In the differential equations for three-dimensional problems, no boundary
sources appear explici.ly, so one has for the conservation laws, instead of Eq.
2.1-2.4,

raass u(4
(gas) at p W (

mass + V. (pp)U =-w (4.2)
(particles) pt P

m ( p a -U -. - 4 -.

momentum (pu+p +V.(puu+pu pU p)+ Vp = 0 (4.3)

nenergy (peo+p e )-+ V- (pl.e +oP p e )+V. (pc) = Q (4.4)
at 0ppo, 0 p ppo

The momentum equation for the gas phase is

a+ + =Vi (4.5)p + pu. Vu +Vp =•- 45

where -4

a[l (4.6)
IPP ap + p p VU11
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and (4.7)
aP =

Consequently, the energy equation with temperature as the independent variable is

PC T + PCU. VT+pV u = (u -u)- F+u. a+(e -e )• +(Q+Qp) (4.8)

and the equation for the pressure is

-Ep .u u.)- F+- = R+(e -e )w +(Q+Qp)]+RTw (4.9)• +p~~. p=•- [(Up u) F+u- oo
V

Variations of cross-sectional area of course do not appear explicitly; they enter
the problem when the three-dimensional differential equations are solved in a
specified geometry.

4.2. LINEARIZED PERTURBATION EQUATIONS

In Ref. 3 the limiting process for finding the linearized equations has been
described. This will produce the equations usually used, in which terms of first
order in the wave amplitude and mean flow Mach number are retained. The sets of
equations already found in Sections 2 and 3 are essentially based on that proce-
dure, although they have not been so rigorously deduced here.

From Eq. 4.5 and 4.9, one finds the linearized equations for u' and p':

S--I = -- --4
-U' =-p(u---- u'+u'.Vii)+F'a'(.0

P -- +Vp _ 7V +, (4.10)

ap' + v-u' = -u-vp'-yp'V-i+P' (4.11)3
at . p-Yl +P

with

P R ---- 7-(lýW+ w'p + (0'+Ql (.12

V pp p p Pp

The linearized wave equation for pressure fluctuations is

P h (4.13)

a at

3 Note that the assumption of incompressible mean flow, V-u = 0, is not made.
This is obviously necessary if there is residual combustion (Wp # 0), but it is
also a formal convenience for later comparison with the one-dimensional results.

12
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subject to the boundary condition, deduced from Eq. 4.10, for the normal gradient
at the boundary: (

4n • Vp1 = _f (4. 14)

The functions h and f are now

h p+V-- - V-I CF'- )• . - _ T - , (4.o15)

a a a

SP-at' n+ F(U. Vul,+U,, VU). n _ (F,-c, ). n .(4.16)

As formulated here, the three-dimensional problem does not account totally
for all interactions between the wave motions and the flow issuing from the sur-
face. This can be seen most easily by examining the special case of one-dimensional
motions. The left-hand side of Eq. 4.13 is then identical to the left-hand side
of Eq. 2.18 but the right-hand sides and the boundary conditions in Eq. 2.20 and
4.14 do not agree.

With variations only in the z-direction, Eq. 4.15, 4.16 and 4.12 give

-- a2 1-182P'h -p (u-u,1) + =u _.0_+_g.(F,_o,+ -) p'__ du 1 aP'h = a zz--Za z at E z - Z a t d- -Z a
a a

f0

Cv P P PP P

These will obviously not reproduce the one-dimensional problem discussed in
Section 2. Indeed, there is no possibility here of representing any coupling
with the burning surface! The reason, of course, is that in inviscid classical
acoustics the only boundary condition is placed on the velocity fluctuation
normal to the boundary--this is simply zero, always, for one-dimensional problems.
It is mainly this difficulty which motivated the work of Ref. 4. Modifications
of the inviscid three-dimensional problem consist of approximations to the pro-
cesses occurring in boundary layers present in the real problem.

However, the case of truly three-dimensional motions with significant com-
ponents parallel to the boundary surface has not yet been treated. This is re-
ferred to here as the "modified three-dimensional problem"; it is treated in
Section 6. As an aid to that discussion, it is useful first to examine some more
detailed results for the stability of harmonic motions.

13
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5. CALCULATION OF THE COMPLEX WAVE NUMBER
FOR THE LINEARIZED NATURAL MODES

The normal or natural modes for a linear system are characterized by harmonic
time dependence; ill fluctuations vary as exp(i~kt) where

ak = w- (5.1)

is the complex wave number. If the growth constant a is positive, then the ampli-
tude of the waves grows with time. Now for a linear acoustic wave, the energy
density is the sum of potential and kinetic energies:

e =+.!- -. 2
e- --z +2(u PO (5.2)

e 2p a

Here, 4Sp, eu are written since they must be real quantities to make the energy
real. 4•

a All phases in time are referred to the pressure oscillation; for harmonic
motions, then

p' = at e iWt (5.3a)

- ?at . i(Wt+l,) (5.3b)'UI = U e e

where * is the phase of the velocity fluctuation relative to the pressure fluc-
tuation. In general, both p and u may be complex functions of position, but
suppose for the present that they are real. Then the real parts of Eq. 5.3a, b
may be used for 6p and tSu in Eq. 5.2 to give

rl 1 -- 'Z2 2 Zat
ea = _r - cos wt+ .p(u) cos (w t+4)e (5.4)

pa

and the time-averaged value is approximately

4 One could of course introduce complex conjugates and write
1.1*

e pIp,* +.p'u' .'*.

14
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-- 2 1 ^2t
a 1 - e , (5.5)

pa

The time average here is over one cycle of the oscillateon and is valid only if
the amplitude of the wave doesrn't vary rapidly: a << w. It follows from Eq. 5.5
that the growth constant is related to the rate of change of energy density ac-
cording to

i a
- dt (5.6)

a

For interpretation of later rcsults, it should be noted that Eq. 5.6 can be inte-
grated over the entire volume of the cavity, showing that 2a equals the fractional
cate of change of the total time-averaged acoustic energy in the cavity.

The linear stability of the normal modes depends on a. It is easy, following
the development first given in Ref. 3, to find a formula for k2 which can be eval-
uated using the classical acoustic mode shapes. The wave number for each mode is
known to first order in the perturbations (i.e., to first order in the mean flow
Mach number) when the modes are known to zeroth order. Those are the modes for a
closed chamber with no combustion and having rigid walls. This is a well-known
characteristic of perturbation expansions of the sort used here.

On the other hand, the actual mode shapes in the chamber will be distorted
from the classical modes by terms of first order in the mean flow Mach number.
Moreover, they will be complex quantities of position, which means that the actual
pressure and velocity fluctuations will have phases varying with position in the
chamber. All phases are measured relative to the unperturbed (classical) acoustic
pressure oscillation. Thus, for example, Eq. 5.3a then becomes

P? I= I eat e (wt+4p)

with ýp a function of position. The actual energy of the wave, Eq. 5.2, will also
depend to first order on the mean flow Mach number. These refinements are of no
consequence for the first approximation to linear stability.

5.1. ONE-DIMENSIONAL PROBLEM

With the exponential time dependence, all fluctuations can be written in the
form p' = p exp(iikt), for example. Hence, Eq. 2.18 becomes

dz(

with the boundary condition at the ends set by Eq. 2.20:

15
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dd• =- fl (5.8)
dz 1 .8

In the absence of combustion, Eq. 5.7 and 5.8 become

a Z+ k = -ifykpu- k d (5.9)

dz c

d-ýi= 0 (z = 0, L) S.0

Equation 5.9 exhibits explicitly the contribution of nonuniform area alone,
when there is no combustion or average flow.

The procedure for finding an expression for the wave number involves essen-
tially a comparison of the problem of interest, including perturbations, with
the problem having no perturbations. The latter is simply the classical acoustic
problem for a straight tube, governed by the differential equations

2A1
d=t + = (5.11)

dz

S= 0 (z =0, L) (5.12)

To find the first order formula for k2, multiply Eq. 5.7 by pX, Eq. 5.11 by p,
substract the equations and integrate over 0 < z < L. After use of the boundary
conditions Eq. 5.8 and 5.12 one finds

k 2 1 { L [tlL1
,z +

0 0

where

aLa L 2
E = I dz j dz . (5.14)

0 0

All terms in h1 and fl contain the Mach number of the mean flow as a factor (see
Ref. 3 and 4 for further details). That is, all perturbations of the classical
problem are small, as necessary for the calculation to be valid. Hence, it is
§ufficiently accurate (i.e., to first order) to replace p, u everywhere in
hl, f1 and E2 by z and u.. The right-hand side of Eq. 5.13 may therefore be
evaluated. To do so, it will be necessary to use the relation for the acoustic
velocity,

16



__NWC TP 5349

U . - ;y (5.15)

With (2. 19) for h 1 = 1 exp(oi'atb) hl e;.(ik -it),

LL ik k L dz

:• •hp~dz =- •kg--- c PZ - ) +d2• d z dF~be - -& P+•- d

and with (I. 21)for 1 = 1 expliku td

(5.17)

The area Sbe has been introduced as the area ot the end of the Chamber over which
"u' differs from zero; hLis may cc'cur usually at a burning surface or at the en-
trance to a nozzle. Addition of Eq. 5.16 axd 5.17 produces, after some further

•-- integratien by parts:

L ~ ~ S L .LL

be be b d

F o

g~g With Eq. 2.20 and 2-2! one finds

g~~ Pt -o- d-=-- md - +u -tl-[,--

fP + P' (§ cu)W a, dzz;9

co_; 0 pd dq0

(5.17)
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-'.---- fPlPdz= .. iak, •'t. dq--ily 1) k1, I 1t bdqdz

a 0sc -pc

.2dp,[ dScd kg L , dSc

oz dzS Y- p tu Sc

ktR t&2 j dz

a 0 C

k L
-1- jp.+LW^ + 6 +Qfld (5.20)
a -vO p p Ppp

The -1 part of (y-1) times the second integral is combined with the first inte-
gral in Eq. 5.19, while the y part is rewritten by use of the continuity equation
for steady flow:

-dS lw-Jn.dq - dz +S dz -- (.1
b z dd c P (5.21)

PSC c p

Then the formula for k2 has the final form0
--,2 (D

2 2 2 PSbeL L m d
(k k 2E ~ f-RIF i~ak~ J' M q

pa co 0  0 C

@~

-L G

?-+ I dz .F-dz}

a- v p- dq p t, pz pa dpLd•dp dz S

1 8 "' dq - d F d,0 d S 0
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kt Li~ (5.22)
-1-R Rj Tp-fzndqm - jPi-~dz;

i0 0 dc

The various contributions have been grouped as shown according to the following
general interpretations:

These contain all terms representing the response of burning
surfaces (O is related to the admittance function and ^mb to
the response function). It addition, the influence of a nozzle
at the end of the chamber appears through its admittance func-
tion (the a term). The term up represents the convection of

acoustic energy, by the mean flow, through the end walls. It is
an energy gain to the wave system because it represents the addi-
tion of energy by the inward flow after the flow has acquired
the acoustical motions.

SThese represent interactions between the mean gas flow and the
acoustic field. The first term represents an energy loss for
the waves in the chamber. It is due to the inelastic process
by which the incoming flow acquires acoustic energy. Note that
j + k,2 (dj£/dz) 2 is proportional to the volume density of
acoustic energy. The second term is the net (averaged) work done
by the acoustic pressure against the mean flow. The third term
shifts the natural frequency. Its interpretation is not obvious
it arises from the term yp'u dtnSc/dz in Eq. 2.25.

Q The first term is associated with the addition of particles from
the burning surface, and the fact that they must acquire the
local fluctuating motions. The second term represents the influ-
ence of particles distributed in the volume of the chamber and
hence contains, partly, the attenuation of acoustic waves by the
particle/gas interactions.

(19All these terms vanish if there is no residual burning within the
volume. Those containing wi or wp as a factor are present only
when there is burning of solid (or liquid) particles. The first
term is associated with energy release and the second term repre-
sents a source of acoustic energy due to the distributed source
of mass.

O This represents the effect of temperature fluctuations at the
combustion zone, which are nonisentropic. Hence, it arises due
to the production of entropy, a.d part of it is an energy loss
for the acoustic waves.

19
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the boundary layer when the axial components of momenta of the
gases and particles entering differ from those of the gases and
particles in the bulk channel flow.

Some of the above will be interpreted in more detail later.

5.2. MODIFIED ONE-DIMENSIONAL PROBLEM

The calculation of the wave number goes through in the same way: the only
major difference is that the unperturbed or zeroth order equation must now corre-
spond to Eq. 3.7, which, for harmonic motions, is

. -(S k h (5.23)
c

The boundary condition is still Eq. 5.8, but the unperturbed problem is represented
by

1 d (S t) = 0 (5.24)S dz (c-- dz k tp -

C

_0 (5.25)dz;

Now multiply Eq. 5.22 by ScP9, Eq. 5.23 by Scp and follow the prescription out-
lined above to find

SL L)

ka= k +-• # lP•Scdz+ [f (5.26)

where now

LaEa ScdZ . (5.27)

The definitions in Eq. 2.21 and 3.8 of fl and hII lead to

-- 2 L k
2 2 2 =7k^

(k-ka )Ea =ipk,( + b 1  + ( l rA ( )dt. ~g 10 (P+ 2Pb]+i(V -1)-- pt az ' (-USc~dz

p~ a 0 ab4 d c

L dA . kA L

0- ( ) d i- J PIIpS, c (5.28)0 aO0
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The integral over a is like Eq. 5.19 except that dzISc is replaced by dz;
that involving P11 is

kL = ~ jmbdqdz~i(y-1 t m

a~~~ v n . 0 T

k LA

_i k-tR -AL j~dd (5.29)

a 0

Thus, Eq. 5.28 becomes

-AZf _ L L

(k k~~)F 1  =ipk(, UP+ **j)S -i-ak, j Pt J3m1biquz +

p a 0 "0

0D
1 L 2  dZ iCt L 2 1 d USd

a P 0 k.~a 
c

It GP ) @ Lz S - S d z },
d~ tj r -( )pS dz'

+U~+(+ dad-S ky 2dzjui)w Sdj
a ~ P p Cz Ja p c 0 p p z

C Sd (530
Theý inepeain ofcd~ th aiostrs r h sm s those _ litewboe

e w 47 %;21
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5.3. THREE-DIMENSIONAL PROBLEM

The calculation now centers on solution to Eq. 4.13. The unperturbed problem
is described by

N + N (5.31a)

-n = a (5.31b)

where N stands for three indices, one for each dimension.

For harmonic motions, Eq. 4.13 is

V Z +kZ h (5.32)

with the boundary condition

A- . (5.33)

Now multiply Eq. 5.32 by p , Eq. 5.31a by p, subtract, and integrate over the
volume of the chamber. Afper use of Green's theorem and the boundary conditions
in Eq. 5.31b and 5.33, one finds

k + I N V+ N . (5.34)
SEN

Again, of course, this result is valid only to first order in the Mach number of
the mean flow. Thus, in fi and f one must use the zeroth order approximation, PN'

2 Pto the mode shape (cf. remarks following Eq. 5.6). Here, Eg is

2 'dV (5.35)
N = PNV

The acoustic velocity is now given by the formula

N PN •c(5.36)

Hence, with h given by Eq. 4.15, and f by Eq. 4.16,

fIPNdV =-- C' -L Nv J -Z dV+i !Y" SNV" dv+S V- A )

S- Uii - P(-idVV

a

= ip22kN n + n.CA nak N
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where

C=u V(VPN) ++VPN u (5.38)

All terms in C can be combined to give an i4teresting simpler result as follows;
since in Eq. 5.34 the integrals over h and f must be summed, one encounters the
following combination:

p9-j'v" c (v+ _ n_ CdPN S

'N NN

The first and last terms cancel, while the second one can be rewritten.

-7= [:. V(Vf N)+VdNV-v C. V dN

--4 -= [V(ii. VNN) - V•N x V xi]. VPN

S~ Consequently,

'NN "N N2

N lc N

The irs andlas ters cncel whle he scon onecanbe rwrit23
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The first integral vanishes because of the boundary condition in Eq. 5.31b, while
the second is exactly equal to the second term in Eq. 5.37. Then since the mean
flow field is not assumed to be free of sources,

k N.J.- AZ !N - ' k Ni u fu- VpidV = i-- PN u. adS-i -udV
a a a

Hence, after a few other simple manipulations, the formula in Eq. 5.34 for the com-
plex wave number can be written explicitly as

0

jfi I PN ndS-
Spa

N -

G.

HI

+1 ~ F - 7N dV

- C e w +e w ~ )+(Q+Q )]dV+i=~ SPNp^,4wd
a v pa

(5.39)

The various contributions have again been labelled; a few blank spaces are purpose-
ly indicated for comparison with the one-dimensional results. Apart from the in-
clusion of residual burning in the chamber, Eq. 5.39 is the same as a result ob-
tained in Ref. 3.

S In this term only, V • U has been replaced by w 15, by use of the continuity
in Eq. 4.1 written for the mean flow. This substitution aids comparison with the
one-dimensional result.
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These results for the complex wave numbers will be discussed further in later
sections. First, however, they will be used to motivate a fourth formulation of
the analysis of instabilities.

I
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6. THE MODIFIED TIHEE-DIMENSIONAL PROBLEM

At the end of Sztion 4, it was noted that the classical three-dimensional
formulation does not reduce to the one-dimensional results covered in Sections 2
and 3. Moreovar, it is not possible, within the strict three-dimensional analysis,
to handle couisliug at the boundary when the main wave motions are parallel to the
boundary. Loth of these difficulties are removed by patching the three-dimensioual
analysis.

The essential point is that the one-dimensional formulation6 implicitly
accounts for viscous processes occurring in the flow adjacent to the lateral boun-
daries. If those terms correctly representing boundary layer effects can be iden-
tified in the one-dimensional ayaiysis, then they may be incorporated in certain
results of the three-dimensional analysis.

Since the differential equations for the one-dimansional problem contain these
boundary terms (e.g., those terms involving mb and mb(P) in Eq. 2.1-2.4) while the
partial differential equations for three-dimensional problems do not, it is neces-
sary to establish a connection elsewhere). In the present work, it is convenient
to compare the formulas for the complex wave numbers in Eq. 5.30 and 5.39.

The problem comes down to determining what terms of Eq. 5.30 reprjselt genuine
boundary effects and should therefore be included as surface terms in the three-
dimensional result in Eq. 5.39. Resolution Yests on correct interpretation of the
various integrals. Comparison shows that the one-dimensional result in Eq. 5.30
contains six terms more than the three-dimensional result in Eq. 5.39. These are
numbered in Eq. 5.30 and will be considered in turn. It must be emphasized that
the right-hand side of Eq. 5.30 represents the various contributions to rates of
energy addition to acoustical motions entirely parallel to the lateral boundary,
while the mass addition (mb, inb, etc.) is occurring mainly normal to the surface.
Deviations at the surface from motion normal to the surface are represented by m
and L. It should also be noted that in all terms, one factor pI, or in some cases
dp•/dz, is present because of the spatial structure of the acoustic mode. Thus,
for example, a process which couples to the pressure fluctuation is most effective
where p, is large. The numbered terms in Eq. 5.30 have the folkwing interpretations.

6
The difference between the formulations of Sections 1 and 2 lies solely in

the way in which variations of area are handled. This is of no consequence for the
present discussion, so the two analyses will be referred to together as the one-
dimensional formulation. It should, however, be emphasized that the modified one-
dimensional formulation produces more accurate results when the cross-sectional
area varies along the axis of the chamber. The results of the two formulations of
course agree for the case of constant area.
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( and® . This represents the direct influence of fluctuations of the mass
flux from the lateral boundary. It arises, of course, due to the coupling between
the acoustic field and the combustion processes at the boundary; it should be com-
pared with the term Oakz[upLSbe]b which represents the corresponding interaction
at the end surfaces where there is no component of acoustic velocity parallel to
the surface. In the latter case, the driving of the waves is proportional to the
velocity fluctuation.

The difference between the two situations may be interpreted as follows.
When the surface is oriented normal to the wave motion, motion of either the sur-
face or of the gases leaving the surface produces p-v work: it is the rate of p-v
work, proportional to the velocity, uhich matters. But suppose that the surface
is oriented parallel to the wave motion. The influence of fluctuations of the
flow leaving the surface is not now as an agent doing work on the waves, but as a
mechanism for locally increasing the pressure of the acoustics wave. The origin
of this term is a2 I mbdq on the right-hand side of Eq. 3.3. It may be recalled
that Eq. 3.3 is the result of adding R/Cv times the energy equation (Eq. 3.2) to
RT times the continuity equation (Eq. 2.1); that step produces the source term

[ (hoseoh RT ]I Xbcq Y[-RT+RAT°)S mbdq

v

There are, in fact, two perturbation terms arising here, for

(a2 mbdcq)' = a iiidq+(a Z)'Ij dq = ia2Smjdq+-yRT' Siidq

-2 ijm~dq -_Z(Y± +a ~d (6.1)
P

If only the first term is taken into account on the right-hand side of Eq. 3.5,
one has

(PtS= aJIdq . (6.2)

Thus, the term in question appears as a source of pressure changes.

As an aside, it is instructive to examine an approximate means of determin-
ing the contribution from a from Eq. 6.2; differentiate Eq. 6.2 with respect to
time and replace au'/Pt by the approximation

S p6F a (p'Sc)

)-a . - dq . C6.3)

Now suppose Sc is constant and note that for standing waves,
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0t14 •-ktp

RK -a2k p'

at

so Eq. 6.3 gives iak

(k -k?)p r~o .fmd
c

Now multiply by p' and integrate over the chamber to find

(k Z Sc E J PLP, mdqdz

which is exactly that exhibited in Eq. 5.30 for Sc constant.

The point is that this term involving mb is a source term associated with
turning of the flow at the boundary; it should therefore also appear in the three-
dimensional case. However, it should be present only when there is a component
of the acoustic velocity parallel to the surface. To see what should be used in
the general three-dimensional problem, it is helpful to contrast the two cases
which have arisen in the one-dimensional problem. The contributions to (k2-k 2 )EY,
per unit area, for the direct coupling between the acoustics field and combustion
are

no acoustic velocity k k
parallel to the -ipkip. au __- up.. (6. 5a)7
surface a

acoustic velocity kt.
only parallel to -iak•,•n-i - RpA I mb . (6. 5b)
the surface a

It should be recalled that the acoustic velocity referred to here is that of
the classical unperturbed acoustic modes. At the surface itself, the normal com-
ponent is always zero for those motions; the u in Eq. 6.5a and mb in Eq. 6.5b are
the small fluctuations normal to the surface due to coupling between the acoustic
field and combustion. Term ( has also been included in Eq. 6.5b since it is
also, obviously, associated with coupling at the boundary; it too comes from the
source term (a 2 + RMTo) f mbdq.

7 The minus sign arises when the first term in Eq. 5.30 is written out; e.g.,
[Up£Sbe]b = (SbePiU)L - (Sbepu)o. At z = 0, u is positive for flow outward from
the surface, which is the convention followed in Eq. 6.5a and 6.5b.
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The question which must be faced here concerns the correct form of the coupl-

ing terms when the unperturbed acoustic velocity in the vicinity of the surface is
neither purely normal to the surface [case (Eq. 6.5a)] nor purely parallel to the
surface [case (Eq. 6.5b)]. Several different arguments have been examined, but it
appears that the desired result can best be obtained in the following way. By
definition, the fluctuation of mass flux, m - pu, is

zb-=- + -1- (6.6)
mb Ub Pb

so the velocity fluctuation is

= = o = - 9a (6.7)
bub- O(nb -Pn) 67

mb P P P

By use of the perfect gas law, the density fluctuation--which here is at the edge
of the combustion zone--is

T

- = _ T (6.8)

p p T

The temperature fluctuation can be broken, as earlier, into two parts: that asso-
ciated with the wave motion outside the combustion zone--the isentropic fluctua-
tion--and the nonisentropic part:

AA A A

AT (.L AT =+
T (6.9)

T IS. T' P T

Thus, the density fluctuation is

P (6.10)

p PT

and Eq. 6.7 becomes

A -1 A - m b AT= mlb u -b---y. (6.11)* p p pT

The last result is, of course, always true, irrespective of the character of the
acoustic mode. Now substitute this into Eq. 6.5a to find

A b +!b &k kt A.Z

p 'yp pTa

The convection terms cancel, and the result is
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no acoustic velocity k_
parallel to the -i-p mnb-iY - RP Z•Tmb (6. 12)
surface 0 a

which should be compared with Eq. 6.5b. Thus, the only difference between the two
cases is the factor y in the nonisentropic term in Eq. 6.12.

Now for the general case, the acoustic velocity of the unperturbed acoustic
field near the surface is partly parallel and partly normal. The problem of
representing the surface response in this case is discussed in Appendix A, where
it is shown that Eq. 6.5b and 6.12 should be weighted respectively by factors
611, 6., such that 611 + 6± = 1; in the limit of no parallel velocity, 611 = 0,
6= 1, while if the acoustic velocity is entirely parallel, 611 = 1, 6± = 0.
These weighting factors are related to the mode structure as shown in Appendix A.
The discussion there breaks essentially into two pieces: a detailed examination of
a general acoustic mode in the vicinity of a rigid surface; and a "proof" for the
representation of the coupling in the general case (Eq. A-15).

The conclusion of the above argument is that the missing terms and a
in Eq. 5.39 are accounted for and combine with the surface combustion terms al-
ready present, in the surface integral

-nI + A¶T(611+L6±)]dS . (6.13)

a

The remaining boundary terms in Eq. 5.30 will be incorporated in the three-
dimensional problem in a similar way.

2 . This term represents an energy exchange associated with the acquisition,
by the average inflow, of the local acoustical energy. Again it appears as a
source term in the one-dimensional problem and is present only if there is a com-
ponent of acoustic velocity parallel to the surface. Hence, the corresponding
term for the three-dimensional problem is

3(6.14)
p a N kN
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This term representq an energy loss associated .with turning of the

average flow of particles into the chamber from the boundary. The corresponding
term in three dimensions is evidently

L^ d•%

Jb dqdz p VPNrnb 6 11dS (.5

(D. This term involves fluctuations of the inflow or outflow itself, paral-
lel to the boundary. It can therefore be taken over directly to the three-
dimensional problem. At the burning surface, both p and ý may reasonably be
taken to be zero--i.e., the flow is assumed to depart the surface in the normal
di±rect ion.

All of the preceding arguments lead to

2 2 2 R.A A 'b T 6 ,+b3~
(kc - lk)EN = N

a

p a kN a

+ -i CVP 61in FC
P *VN IIn.dSSF .VPNd

k- P: dV+ J'W+(u-u^ •(Pd V1
a Np p p

SbNdS (6.16)

This is a new result; in later sections it will be applied to some specific
problems. It should be noted first that because of the way in which Eq. 6.16 has
been constructed, it reduces exactly to the modified one-dimensional result in
Eq. 5.30. Also, it should be recalled that some of the boundary terms have been
combined and written in a different way. The modified one-dimensional result

corresponding exactly to Eq. 6.16--i.e., if Eq. 6.2 is used in place of Eq. 6.5--is:

Rmb . L

(-k_ )E 1 iakL( mb+y a
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LR

Pik~ , rfAdq+ ~-jT nbd~
0 4'a A

f.i..S + + (dt, )Z]- fmdqdz

k, L Z 1 d

-1i Pt, i-- (uS )Scdza 0 Scd

L{~ d±fý (P)dq L., dý
+ 0 pd-iz Jb dqz- jF .. _S Cdz}

0 0

+ -ji kgt kL
__L 'ý'ý'+(d+c )IS kz~y Swdz

"a V0 pa 0 pa pc

L _ ýL dý
+ f(UA-U )v - Scdzj -S j - S dz (6.17)

0 p 0 dzc dz c

In summary, it is perhaps helpful to emphasize what has been accomplished.
What is eventually required is the formula for the wave number of three-
dimensional oscillations. But the purely three-dimensional formulation, for
inviscid flow, fails to contain certain contributions arising essentially from
the flow in a boundary layer. Strictly, those contributions can be found only by
actually solving the boundary layer problems. However, the one-dimensional form-
ulation affords a means of determining approximately the desired results. The-.----
accuracy of the results cannot be established using the procedure followed here.

The idea is usefully illustrated by a more familiar example, the attenuation
of waves due to viscous forces in the acoustic boundary layer on the wall of a
tube. This is usually found by computing the energy dissipation in the (linear-
ized) acoustic boundary layer. For a standing wave in a circular tube of diameter
"D, the contribution to a is

Dt-= __ (6.18)

where v is the kinematic viscosity and Pr is the Prandtl number. This result is
based on the assumption that the boundary layer is locally one-dimensional, with
the velocity at the outer edge equal to the total acoustic velocity.

On the other hand, there is a displacement effect of the boundary layer,
which can be taken as the basis of a different calculation which has been worked
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out by Chester. Because the fluctuation of velocity varies along the axis of the
tube, au/az # 0, preservation of continuity in the boundary layer requires that
the velocity v, normal to the axis, at the edge of the boundary layer, be non-zero.
If the acoustic equations are written in one-dimensional form for the cross-section
of the tube bounded by the edge of the boundary layer, then one has Eq. 2.1-2.4
except that there are now no particles, no combustion of any sort, and the cross-
sectional area is fixed. The only difference from the usual one-dimensional equa-
tions is a source term in the continuity equation,

+ - (pu) pvbdq = Sc vb (6.19)

There is, of course, no average flow inward, so vb has only a fluctuating part.
Chester has computed vb by analyzing the boundary layer flow, and the linearized
form of Eq. 6.19 is

.-- 8u -- 4 O (6.20)-t _P--: (I + y 1" i u"z' t-t)d W
SPr- 0

while the momentum and energy equations are simply

p = 0 (6.21)

--8T' _P Ou'P-T'+. -5 = 0 (6.22)

v

It follows that the wave equation for the pressure fluctuation is

a I -W (6.23)a at

For harmonic motions having complex wave number k, the procedure used in
Section 5 then produces the formula for a standing wave in a tube,

L

2iW 2 2W AWldz (6.24)k k -- = k t
p~ t dz

The imaginary part gives the formula for a,

L (r)L (6.25)
a. Jr ~ W P,dz
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Now for a scanding wave,
A ilc 1  iw~t

S= -- e • sin(kDz).

p a

I-- e cos(k z)

pa

and

of which the real part of w is

Since p = cos(kz), Eq. 6.18 gives

D 7

This differs from Eq. 6.18 only in the replacement of w by 21y. For air

(7 = 1.4) the error is very small indeed--much less than can be measured, in

fact.

Although a boundary layer analysis was used to evaluate vb, in Eq. 6.19,

this example does show how a one-dimensional formulation with sources at the

lateral boundary may reproduce a result found wholly by a boundary layer analysis,
Sine. that give Eq. 6.18.
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7. A FEW REMARKS ON LMTERPRETATION

In Section 5, Eq. 5.6, the growth constant a was related to the rate of
change of the time-averaged total energy in the chamber. It is helpful to inter-
pret the formulas in Section 6 in that way. The real and imaginary parts of Eq.
6.16 are

2 k E 2 I+y6.LdS}
)~ k N]N kN N[Ab~i -2

a a

k Aj^(r)- pd_ (f. V

(r) (u-u )(i V)bddS p p
va

-P_ EN = V1

a

-[N+ -( - (r)-] - -( pV.d

pa kN

f{ W.i) V -6 Ili" W. 1

35



NWC TP 5349

C IPNL p Wpp+e PwP +(Q +p )]dV
a v

S - • pUd'V ds (7.2)

The fact that uN is pure imaginary (see Eq. 5.36) has been used in Eq. 7.1 and
7.2.

It is mainly Eq. 7.2 which is of practical interest, and especially the
first five terms representing the coupling between wave motions and combustion,
and the mean flow/acoustics interactions. In order to clarify the meaning of
these terms, it is helpful to express a as the ratio of the rate of change of
acoustic energy to the total acoustic energy in the chamber, as in Eq. 5.6.
First note that E2 is proportional to the total time-averaged acoustic energy in
the chamber. The instantaneous time-averaged energy density, with the time
factor dropped, is:

AZ

1 PN -1
"eN =4 q ( + pUN) = PN + KN (7.3)

pa

where PN and KN are the time-averaged densities of potential and kinetic energy.
Hence, the total time-averaged energy in the chamber is

.2
eN 

+ d
pa

1 r Z,2 ..

, + (VpN) ldV = J(PN+KN)dV (7.4)- PN + (VN

4p a kN

Now by use of the wave equation for PN,

j d (VP)}dV = I'V. (N1 N)V_ - f pl•dV

N N PNdv

The first integral vanishes according to the boundary rindition on PN' so that the
normalization integral E• is related to the time-averaged total energy in the
chamber according to

P 'dV = E = Ze (7.5)
N N N
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THe formulas for the one-dimensional formulation are entirely analogous, giving,
for example,

t0t S dz E =Zpae (7.6)

with the time-averaged energy density

S^ 2
P 2) (7.7)

pa

By taking the imaginary part of Eq. 6.17, one finds for the growth constant
in the one-dimensional problem

W~ t2

a

L

).ý Pty s - fin ((S)d Rfdz}k~{ r~rAT~~]p b _Zb A A T mb
a - 0 a

~kLt 17 Z idP.t_ + niuidqdz

a P O k t
Li21 d (U Sd

-f z~ -TGis)Cdz

L dz L dz

L ,,p(i)-i- _ _0, (i )-( r)] dCS"- f pu,, ep nbP w , +Qmb )]S d--(zs
L

-f 1j~11 fjiiijb dq-i- (' -i-- dz (7.8)
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U U

To see what the various pieces mean, it is best to replace EA by use of Eq. 7.4,
2Ele by Eq. 7.6, and use the fact that -2a is the fractional rate of change of time-

averaged energy in the chamber (cf., Eq. 5.6):

1 de (7.9)

For - 2 agN and -2ag£, one finds the sum of terms shown in the following table.

TABLE 1.

N

(Th lf( (r) fRmfb Ai(r) (r)e~ --4 bp~m (r~-
\ ZJ a 0 Zp a

12 _ -_Ar* [S- (R dAF _L1 %(rr) Rrr A^ (r)7

-- jJmb _q+ S~AT' mbdqjaz - - N r) -2 T J6iidS
ZpO a a

2L
f(P, +K,4m -idqdz 2- 0 (PN+KN)6jji~i.dS

p 0  p

®P Z 1k 0 d--) Sc dz GN s F(" V'. dV
0 p CL c p a

C) d~~~Ai~LfnPdZ i A~* P~~b

o7 P dz Sdz +(drl+pVr]

8 -1 L -1

o P -J PSi Zak N dVpP

Zpa V 0 Zpa

+(Q ()+0 (rJS dz +(Q ()+Q (r dV
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TABLE 1. (Cont'd.)

L
1) 2-y fP WS dz 2zYj P.

L
L (r)_ far(r) Pt (r) a (i2[pu Z- Srdz L

in uZpsk h p p 1h pha 0 2~p ak N P

.nL (P w' M A (ijjP)1

P U11 M +u PNdS

difernp bewea•n tte sufae 27p reainn p bcsotegop

A factor ½s appears explicitly in termssoGae essentialy, and because of
the time nsit. orl example, conser the first term in (D. ro Eq. 6.12 is
used to eliminate mo inb f oror

(1/2)[p (r) S be1C

arises. The product puu is the rate at which work is done per unit area of
surface, and the ½ is the average of cos wt cos (wt + a) where o is the phase
difference between pa and u' at the surface. The remaining pieces of the groups
0rand@ are also rates of doing work, associated essentially with fluctuations
of density. Similarly, all other terms containing the ½i are various kinds of
time-averaged rates of doing work.

The term shows that there is a time-averaged energy loss at the surface,
equal (per unit area) to

-- (PN+KN)nb6II 2 (7PN P ÷u6I
P 4p a

The factor 611 ,as argued above, assures that this term arises only if there are
acoustical motions parallel to the surface. As emphasized already, the process
represented by this term is the inelastic acceleration of the gases leaving the
surface normally, so that they acquire the acoustical motions parallel to the
surface. The time-averaged energy possessed by the gas is ultimately (PN + KN).
The factor 2 arises here because the amount of work done in such a process is
twice the mechanical energy finally gained. Half of the work done appears as the

* mechanical energy, and half is dissipated as heat. The total work is of course
done by the waves already in the chamber and hence is obviously an energy loss.

Similarly, the term 0 represents an inelastic pi-cess; the gases evolved
in the combustion of particulate matter, at the rate %P, must acquire the local
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potential energy, PN" Once again the work done is twine the energy finally pos-
sessed by the gas.

Finally, term 0 should be interpreted as a time-averaged work per unit
volume and time- For the acoustic field,pN/P = 600, so PN/fa 2

Hence, the factor in parenthesis is Just pN(V-U)/5 and represents a rate of change

of volume due to the density fluctuation and dilatation by the mean flow. Thus,

the whole term does indeed represent a rate of work by the pressure fluctuation.

SIn 
summary, it is possible to provide a physical interpretation for all the

terms in the growth constant, although their appearance is not obvious in all

cases.
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8. AN ALTERNATE METHOD OF COMPUTING
THE GROWTH RATE

In Ref. 2, jantrell and Hart have proposed a means of computing the growth
rate for acoustic waves in a rocket chamber. Part of their results are identical
with part of the results found here, but their formula for the growth constant a
is incomplete. Moreover, if their procedure is followed exactly, it is not possi-
ble to determine, among others, the influence of residual combustion. Their tech-
nique is therefore not applicable to liquid rockets, for example, whereas the
present analysis is valid for any combustion chamber.

It is the purpose of this section to summarize the calculation proposed in
Ref. 2; to identify the respects in which it differs from the present work; and
finally to show how the general idea proposed there can, when correctly developed;
produce results in accord with those found here. However, it should be emphasized
that since the atualysis of Ref. 3 is for an inviscid, three-dimensional flow field,
it does not and cannot contain the boundary processes, discussed in Section 6,
which have been incorporated in the modified three-dimensional problem.

8.1. SUMMARY OF THE ANALYSIS OF REFERi CE 2

The main idea proposed by Cantrell and Hart is that the stability of waves in
a chamber can be studied by examining the time rate of change of energy in the
chamber. This is computed by integrating the energy equation over the volume of
the chamber, and making use also of the equations of conservation of mass and
momentum. Residual combustion and particulate matter were not accounted for in
Ref. 2, but they will be included here. Then the inviscid equations of motion
are Eq. 4.1, 4.4, and 4.5. In order to c'irify the correspondence between this
work and Ref. 2, Eq. 4.4 and 4.5 are slightly modified to introduce the enthalpy
h =f cpdT:

+ V* (• ) = wp (8.1)

S+ V(h + -u) 1 (F • (8.2)

at 2u _ 1 + ( p

au2 u2a-V-[(h + + u F+e w + (QQ(8.3)
t-• o(vT + -- ) =p+pop (8.3)
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where m = pu is the vector mass flux of gases. Equations 8.1-8.3 are equations
(2)-(4) of Ref. 2 except for the additional terms due to residual combustion and
the presence of particles.

Now the left-hand side of Eq. 8.3 is the time rate of change of the total
energy density for the flow field: it includes not only the energy of acoustic
waves but also the energy associated with the mean flow. As noted below, this is
a crucial observation. Thus, integration of Eq. 8.3 over the mean volume of the
chamber gives the time rate of change of total energy withl-- the chamber:

2 2af P(CT + u-)dV = -fV"[•(h + T)]dV + f [u-F + e w + (Q+Q )dV. (8.4)
at v 2 p* POp p

It is necessary to extract from this equation an equation for the balance of
acoustic energy only.

To do this, the variables are as usual expressed as sums of mean values and
fluctuations. Cantrell and Hart show that the left-hand side and the first vol-
ume integral on the right-hand side can be rewritten and partially combined to
yield their equation (16). Let ( > denote time averages, and one has from Eq.
8.4 with their result written using the notation defined here:

2--4

dV Z2(- .2 >4 -

pa a

+ [p [ eP+ epWPO + (Q+Q )]dV) (8.5)

There are now two important points to be made: (1) the last term on the left-
hand side of Eq. 8.5 and the last two terms in the surface integral on the right-
hand side should be dropped under the circumstances for which the analysis is
useful; (2) the last set of terms in Eq. 8.5 will not produce the influences of
residual combustion and particulate matter found in the present work, for a
reason given below.

As Cantrell and Hart have argued, the left-hand side mipgt be interpreted
as the expression for the time-averaged rate of change of total acoustic energy
in the chamber. Hence, without the differentiation, it is the time-averaged
acoustic energy, and the right-hand side represents the time-averaged rate of
change of energy due to the mean flow/acoustics interactions, residual combustion,
and particulate matter. Therefore, by the definition in Eq. 7.9 of the growth
constant a,
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Spa pa

j dV[½1'-P"+ _-_P + (• •)p, P
--

Zpa a

Unlike the calculations given in the preceding sections of this report, Eq.
8.6 is formally valid to any order of the mean flow Mach number. Consequently,
p' and -' represent acoustic quantities which also may differ from the classical
unperturbed values by terms of first and higher order in the Mach number. How-
ever, for practical purposes, it is certainly a convenience, quite likely ade-
quate, and virtually a necessity if relatively simple results are obtained, to
consider perturbations only to first order in the Mach number.

At the burning surface, the first approximation to U' (which is of course
zero there for the unperturbed field) is of the order of the mean flow Mach
number, as for example shown in the definitions in Eq. 9.1 and 9.2 for pressure
coupling; lAbi and IRbI are around 1 - 7 or so. If the amplitude of th oscilla-
tion is taken t-. be of orderunity,tthen p'u' is of order 1!9, as is upl/2 in
Eq. 8.6. But (u'u ?)iu- and (9 -. i')i are no greater than Mb . Hence, if those
terms are retained, higher order terms in p' and i' must also be retaind. In
order to find those, one must return to the inhomogeneous differential equations
and solve them, a step which has never been taken in practice, and obviously must
involve a great deal of effort. (Formulas for the first correction to the un-
perturbed values have been given in Ref. 3.) For the same reason, the term
(ý • i_')p'/a should be dropped from the denominator of Eq. 9.6, since it is of
order Mb and therefore adds a correction term to a of order Mb2 . Thus, the first
part of Eq. 9.6 is correctly

p a
pa (8.7)

Zpa

The denominator is precisely EN2 /25i 2 and this result is identical to that found
from the real part of the first term in Eq. 5.39.

It is obviously desirable to avoid computing the acoustic field to higher
orders; numerical procedures are available for computing the classical field in
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any geometry, but not with perturbations due to the mean flow. This is the main
reason why regions of high Mach number, such as exhaust nozzles aad the vent of a
T-burner, should be treated separately; they are then introduced in the acoustics
problem as boundary conditions, represented by admittance functions.

Now consider the second part of Eq. 8.6. It is necessary to expand the Quan-
tities to second order, in whatever small parameters are present; for example,

F = + Fl' + F' +

The first order terns are associated with the unperturbed acoustic field. Consid-
er the term up • F

u .F =(u +U I+u '+. (.)I+

=u *F+(U p'F+ ,+ u + i" .'+-t "-F+I "F +
p P IP p1 p2 p p p2

The first term is associated with the average flow and should be dropped. The
time average of the first order terms is zero. In this way, the denominator of
the ratio gives

SdV[ ('U F• +' 2 •fu F o )+ (e' wV+e' w +eo w' +(Ql+Q')]) (8. 8)

Not only are the contributions from particulate matter in disagreement with those
found here, and used elsewhere, but the influence of heat release appears only in
second order. The second result is clearly wrong; for example, such terms must
arise to first order if the behavior of liquid and gas rockets is to be described
correctly. The first order effect does appear in the result in Eq. 6.16 found
here.

The question, then, is: why does the analysis of Ref. 2 produce the correct
form for the mean flow/acoustics interactions (apart from the boundary terms)
but fail to represent correctly the influence of particulate matter and residual
combustion? The answer follows from the fact that the analysis is based on Eq.
8.4 for the time rate-of-change of the total energy in the chamber, rather than
on the energy balance for the acoustic field alone, although the latter is
apparently obtained eventually.

For by using the total energy, one cannot in any obvious way show exchanges
of energy occurring totally within the system. Thus, for example, heat lost
from the mean flow by combustion and added to the acoustic waves appears twice;
once with a + and once with a -, thus cancelling. The debit and credit accounts
are not shown in detail, but only their net result. A net result does appear at
the boundary, as shown by the first term of Eq. 9.6.
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8.2. THE EQUATION OF BALANCE FOR THE TOTAL
ENERGY OF THE ACOUSTIC FIELD

The idea of Ref. 2, that the growth constant can be found from considerations
of the total acoustic energy, can be developed to produce results in exact agree-
ment with those found here. The starting point is the linearized equations in
Eq. 4.10 and 4.11 for the three-dimensional acoustic field. Take the scalar pro-
duct of u' with Eq. 4.10 and add the result to p'/j 2 times Eq. 4.11 to find

. 4 22' - -4 __-._ -.__ -

+ - + V. (u p) =P -ul- (U. Vu'+u'-u U)+ u.-vp,+u,.(F,-a')+pPfP
Zp a pa (8.9)

Now integrate over the mean volume of the chamber and convert the integr '1 of

V-(.'p') to a surface integral:

d-+ dSn'. (u'p') = -ddV U'(.'- ( F-a')

pa

+ SdVp'P' (8. 10)

This, of course, is valid only to first order in the average Mach number, and one
can use unperturbed values for u' and p' on the right-hand side.

The terms in the first integral on the right-hand side can be combined in
essentially the same way as those following Eq. 5.38 were treated. By use of
some vector identities,

--4 -- -- 4 - --4

(- Vu*V'+u'-V) U' u-u')-u xvx•u] : u¼V(u.')

V .[( . uI - (U. u')V. U,.

Thus, the volume integral is

pa

= dS A u'+fdV[-p U. (U'V. U)+-T- Vp'1

pa

The integrand of the surface integral ia of order Mb and hence must be dropped.
For harmonic motions, the first term in the second integral can be written by
use of the acoustic equations

u' 1 j-ak
-- Vp' , V.'' _=P'

ipik YP

45



NWC TP 5349

so

-pu- (uV.) U - vp' U.•
YP p a

which equals the second term in the second integral, as demonstrated in the argu-
ment following Eq. 5.38. Thus, the volume integral reduces to

JdV[pu'- (u. Vu'+u'- -P- U. V" p] - fdVu. v
pa pa

2 2

pa pa

-- "- Z)fV-:
pa pa

which is the result found just preceding Eq. 5.39.

Now to obtain this result in general, it is necessary to show that

-ldVpu(u'V.u') = fdV -- P ° Vp'
pa

or

dViu - [ vp' + uV.u' = 0
Spa

Again by use of the classical acoustics equations, this can be written

" dVU. [p' -- -u ' 0=oat

and by differentiating with respect to time, 8

- 2
dV -[p, u-= 0

at a

8 Because of this step, the end result in Eq. 8.11 has been shown to be true

only to within a constant which can clearly be taken to be zero with no loss of
generality.
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But both and p' satisfy the unperturbed wave equation, since terms of order Mb
must be neglected; hence

pat• at __p--+,•p,au-' - 2ap 2-' --

Therefore, the desired combination is obtained, i.e.,

fdV[ u(uvu+~1V' = dV z U. p SdVu- 2--

pa pa pa

p,2 2 -2

= •dSn-u(-----)- Sdv V' (8.11)
pa pa

and Eq. 8.10 can be put in the form

-d - - U' "u'p,+-f__. I+fdVu'. (F,-o,)-fdv-•_2 V-u+fdVp'P,
pa pa

(8. 12)

The corresponding value of a is given by the formula obtained after taking
time averages of Eq. 8.12

-Zcx= (~S •.['p' un'2- (fdV-P- --.~ ) + (j•dVu' ('-O'))-zae =< dS. 1up1+--- u > -U + __d >-
pa pa

+ ( fdVpP' > (8. 13)

It is a simple matter to verify that for harmonic motions Eq. 8.13 is identical
with the real part of Eq. 5.39, which of course was obtained by an entirely
different computation.

Hence, it has been shown that by considering the balance of acoustic energy
one can obtain the same result for the growth constant as Lhat found by an approx-
imate solution to the linearized equations of motion. However, it is important
to note that both analyses cannot provide the surface terms, essentially associa-
ted with viscous boundary layer effects, which have been incorporated in Section
6 in the modified three-dimensional analysis.
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9. A SIMPLE APPLICATION TO T-BURNERS

It is an important result of the analysis developed here that not only is
the response of a burning surface characterized by two functions, but both neces-
sarily appear in a stability analysis. Consider the case of pure pressure coupl-
ing; then the admittance (Ab) ard response (Rb) functions are defined by the
formulas

Ab (9.1)

a •P

_R (9.2)

m •yp

These relationships apply, of course, at the edge of the combustion zone. The
signs are set so that if Ab and Rb are real and positive, u and mb are real and
positive outward from the surface. After substitution of these definitions into
Eq. 6.11. one finds an expression for AT in terms of Ab and Rb:

A--! = r%-+1-R 1- (9.3)

T Mb bYP

The combination in br,:ckets might also be called the entropy response func-
tion for pressure coupling, since AT/T = As/CV where As is the amplitude of en-
tropy fluctuations at the edge of the combustion zone. To see this, begin with
the combined expressions of the First and Second Laws of Thermodynamics

Tds = de + pdv = de - p

But for a perfect gas, de f CvdT and dp/p = dp/p - dT/T, so one has

Tds = C dT- dP= C dT- RTd-p
P P P P

Now apply this to small fluctuations of an element of gas, and split dT into a
sum of isentropic and nonisentropic parts:

dT - y +AT

T y p T

48



1w

NWC TP 5349

sit:Substitution in the previous equation leads to

•_ Ts CAT+v-i T

Tds CAT+t C -RJ-dp=C AT (9.4)
p 'Y P p P

Since (y-l)/yCp R, the second term vanishes, leaving the result quoted.

The implications of these results may be most easily seen by examining
t the simple case of a T-burner having samples of propellant at the ends, normal to
I the axis, and short grains also at the ends, but extending along the lateral

s walls. It will be assumed that the latter are approximately flush with the
Vý' chamber wall so that the cross-sectional area of the chamber, Sc, is constant.

=z Moreover, resi'ual combustion and the presence of particulate matter will be
ignored so that Eq. 7.8 simplifies to

=Rk~ rn ,.ir) kbeo --- Z)k)Sbe]• )i) 96

LL
-qJP +y R% +-(AT mbil

a a
k A L

The permeter o th chamber ise qsothgat ifd wthe lnthe ofsumthe n l teral grinei

spoLnte areaiofs the burnigsura ce o ne l the suridewg isurae S he secndqotrb

A. 1 o--(r) R - ( -(r)(

_2 USs1r) . L IJ +bJ - kV~b (Ab• +9.7)

a n

Pt - ) ]:, dz (rP dz() (r) Mb ))dz (95

Tor sperimtegrainsthe chnder the insotegalt and wthe lnthe assumtion lthrat thein re-
sponshefucis area cosanfve l the burning surfaceo the secondll contribu-~b

t i th is e simply i q . ad82 hecmutontrsi E.85ae
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The factor 2 arises in both Eq. 9.5 and 9.6 because grains are placed at both ends
of the chamber; the burning area of one lateral grain is Sbs = qLb, where Lb is
the length of the grain.

SSince dp./dz = 0 near the ends, the surface interaction terms, evaluated for

the lateral burning surfaces only, are

t 2 , (s tk 2b tnbSIP( ]+ ddq ne Zk bt S kSFA b b (9.8)
aO0 k t p a

This acoustics/mean flow interaction term also contributes at the vent. For the
fundamental (and all odd modes), • = 0 there, while dpt/dz = -kt sin(kLL/2) =
-kk. Hence, at the vent,

JmFdqdz - mA
pa k pa V

where Av is the flow area of the vent, and my is the magnitude of the mass flux
through the entrance of the vent. The sign change occurs because the flow is
outward. Now by continuity,

mrvA = 2mb(Sbs+Sbe)

so

kII L 1 + (2ktLD(Sb+S(

pa Okt vent

This holds for all modes in the simple uniform burner, since for the even modes,
pt = 1 at the center of the burner, but dp£/dz = 0, and one finds again Eq. 9.9.

Note that there is a gain of energy associated with the flow out the vent.
It arises because as the flow exhausts, there is an inelastic process at the
boundary in which the fluid originally participating in the acoustical motions
flows out the vent with no acoustic energy. The energy it loses is given up to
the field in the chamber, thereby constituting a gain. This process is distinct
from the radiation of acoustic energy, a loss which is associated with pressure
fluctuations at the vent, and is therefore present only for the odd modes. It
should be emphasized that this contribution from the vent is a formal result of
the one-dimensional analysis and in no way constitutes a detailed analysis of
the vent. Indeed, one should anticipate that the one-dimensional approximation
is much less accurate in the vicinity of the vent, so that the results are sus-
pect. Moreover, while it is relatively easy to understand that there should be
an energy loss associated with the influx of mass at the surface, it is difficult
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to understand how the inverse process actually takes place at the vent. This ques-
tion is an important one for the interpretation of data taken from T-burner fir-
ings, but it will not be examined here in detail. A careful consideration of the
vent should probably produce a response or admittance function which appears as an
additional contribution to the energy balance and hb±,ce the growth constant.

The last term in Eq. 9.5 can be rewritten by using the continuity equation
for the mean flow,

dii
pSc pS

Over the burning surfaces one finds

k tS cLzkSi 1
J- Cd dz 2 bs - S (9.10)

Pt, tbs b
a 0 p a

This term also provides a contribution at the vent, but for the even modes only.
Since 2  1 there,

Ek PL, dz] kS 0+ usik

"a 0vent a 0- a

Here U is the axial velocity in the chamber, and again by continuity,

S cU = (S bs + beu

so that

FktSc~A L u lz~
P Jt(be + Sbs b (9.11)a 0

for even modes only.

Finally, for this special case,

E = - Lk S • (9.12)

a a 0

Substitution of Eq. 9.6-9.12 into Eq. 9.5, and some rearrangement, gives
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a 
b

ScL b bb S C

+Sb+Sbc )- 2  (Sbe+Sbs)] L (9.13)
c c even a

modes
only

The term adL/5 represents other possible sources of attenuation, such as wall fric-
tion. The first set of brackets contains all contributions from the coupling of
pressure fluctuations with combustion; the second set contains the mean flow/
acoustics interactions at the burning surface and at the vent.

An interesting special case is that for odd modes (really only the fuvdamen-
tal is of practical interest); if the coupling should happen to be isentropic, then
M--bRb = Ab+Rb and Eq. 9.13 becomes

_L = (r)+z be S bs "dL
Zb( +2 ) _ + (9.14)

a c a

The 2 multiplying Mb is half due to the end discs and half due to the vent. This
result has motivated testing with the variable area T-burner. Measurements of the
growth constant, a, are made for different area ratios, (Sbe+SbS)/Sc. Then if a
is plotted versus the area ratio, the slope is 2(ab(r)+2M-b), and the intercept is
ad. This procedure is based on the crucial assumption that the attenuation ad is
independent of area ratio, a circumstance which is likely not to be true.

More importantly, however, there is no justification for assuming that the
coupling is isentropic. But if that assumption fails, Eq. 9.13 contains essen-
tially three unknowns: Ab(r), Rb(rJ and ad. Again for odd modes, one has

(r)- F4 )ISbs +Sbe IK4-(r)ry- Sbs
b b Y (r+bb)% sL IT

a * c c c

Sbe +Sbs d L (9.15)MZb• (, -Sc --

In principle, a sequence of three tests (at the same frequency, say) in which
Sbe and Sbs are varied will provide three values of a, and hence Eq. 9.15 leads
to three equations in the three unknowns Ab(r)4gb, Rb(r), and ad. It remains to
be seen whether such a strategy may be useful.

Real T-burners in which the grains are not flush with the lateral walls re-
quire more elaborate analysis outside the scope of this work.
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10. APPLICATION OF THE MODIFIED THREE-DIMENSIONAL
RESULT TO MODES IN A CYLINDRICAL CHAMBER AND

THE DATA OF BROWNLEE AND MARBLE

The most extensive study of a stability boundary in solid propellant rockets
is that due to Brownlee and Marble (Ref. 5). In Ref. 6 and later in Ref. 3, the
clas3ical linearized stability analysis was applied. Although attenuation by
particles was suggested as the dominant damping mechanism in Ref. 6, viscous
stresses at the head end were supposed to be more important in the discussion of
Ref. 3. However, not until much later was the admittance function of the propel-
lant measured in a T-burner (Ref. 7).

Midway in the experiment., program reported in Ref. 7, it appeared that the
analysis of Ref. 3 had been verified (Ref. 8). Subsequently, this turned out not
to be the case. The propellant used in the experiments of Ref. 5 contains no
metal, so it is unlikely that attenuation by particles in the product gases is
important. Indeed, motion pictures show that the products are in fact very clean.
There appear now to be at least two possible reasons why the analysis and measure-
ments do not agree--the discrepancy is quite large (Ref. 7):

(1) The T-burner measurements of Ref. 7 provide only values of the
admittance function;

(2) The various boundary terms introduced in the modified three-
dimensional analysis have until now not been taken into
account.

Unfortunately, there is still no data for the response function. Hence, the ques-
tion of the nonisentropic behavior associated with the difference between the re-
sponse and admittance function cannot be explored. The purpose here is simply to
examine the importance of the new terms introduced in the modified three-dimen-
sional analysis.

All influences of condensed particles and residual combustion will be ig-
nored, but the possibility of nonisentropic processes at the boundary will be in-
cluded. Only the stability of waves will be treated here, so the problem is
simply to evaluate the right-hand side of Eq. 7.2:
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2--Ea
2-EE [pN+ RgI t(rp ) ]611mbdS)

N Na

As earlier, all other processes of attenuation have been represented by a decay
constant, ad-

In the results reported by Brownlee and Marble, a particular mode was ob-
served, but there is no added work here in computing the growth constant for all
modes in a cylindrical chamber and later specializing the results as required.
The classical acoustic modes are given by the formula:

" cos(kz) cos(m4) Jm(xinnr) (10.2)

AdJ AM

Si- -djm cos(kz)cos(mi))-_- J cOS(k z)sin(mn)
U P vN = _---- tdr

P aN p ak N

.Z ktJmsin(kz)cos(m44)} (10.3)

kN = 2z+ x (10.4)

In order to satisfy the boundary condition on PN, xmn are the roots of

dJ ( r = 0 (r= r)

dr mnn

where rc is the radius of the chamber. As usual, m = 0, 1, 2, ... and k£ = L
with . = 0, 1, 2 ... The mean velocity field for incompressible potential flow
is -.

U bEZZ -- l (10.5)
C C
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It is simply a matter of arithmetic to compute V'uN and hence 71-

Vn. uN, j6., and 611. For the cylindrical chamber,

. u8Nr

V '.'UN = 8 (10.6)

RNz
la I UN@ý + UNz

V.uN = r- -+--- (10.7)

In these computations, some use is made of the equation satisfied by the Bessel
"function,

d J dJ 2m+ 1 m + (,)Z m (
r dr (10.8)

dr r

At the surface (r = rc) one then finds

m(Z_ v2  2 (109)

""* r cm c m cOs(kz)cos(mn) (10

V11 UN = - (m k )J-ncos(ktz)cos(m4)
p akNrc

and therefore, by substitution into Eq. 6.19 and 6.20,

62- 2 2

6.raz- c (10.11)

xnn c I+cIi-k~rc

I n2 -k2r
2

-11L c 2 2 22 J (10.12)
zn -v.u r cI +Im -k 'r cI

These formulas show, as one would anticipate from the symmetry of the situation,
that the weighting factors 611 and 6.L are independent of position on the surface.
Note that only for purely radial modes (m = k = 0) does 611 vanish.

With these preliminary calculations, it is not difficult to evaluate the
contributions to a.
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10.1. COUPLING AT THE BURNING SURFACE.

It will be assumed that only pressure coupling is important. With AT given
by Eq. 9.3, the c upling terms are

1 (r) 21 2
-'m [R (r )(611+6a.L7+ 1 R()) 2 m(XInrcIcos 2(xn+)d~fcos 2(k z)dz

YP M b 0 0

~"(6~+.2+ ±K r() (10.13)
MbSbs[Rb _ (I +1b)] mKnnrC)mt

where S = 2rr cL is the area of the burning surface, and

S(1+6mo)(1+5¢) • (10.14)

The Kronecker deltas, 6mo, 6Zo, are unity if m = 0, 1 = 0, respectively and zero

otherwise.

10.2. ACOUSTICS/MEAN FLOW INTERACTIONS AT THE BURNING SURFACE

This term is non-zero only along the burning surface. Although 611 is non-zero
at the entrance plane of the nozzle, and of course there is a mean flow there,
there is no contribution. The reason is that this term, by construction, is
present only if the acoustic field is zero9 outside the boundary considered; for
only then must there be a transition through a boundary layer. The energy loss is

^PN +* 1 (VPN) 611mbdS
pa

=M 6 1 J2 (x F z + -t rC (10.15)rbs m mnr

10.3. INFLUENCE OF THE NOZZLE

The first Surface integral of Eq. 10.1 also applies at the entrance to the
nozzle. Relatively little is known about the nozzle losses, but formally at
least, admittance and response functions can be introduced in the same way as

9 Or, more generally, discontinuous. But non-zero values just outside the
boundary different from those just inside will not occur in practice.
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for the burning surface. The values of 6± and 61 are of course different; for ex-,

ample, VI'" N is now 9UNz. One then finds

It - (10.16

nLI Z Z 1

m nc 
c

•Z 2-1 2 2 ,
°6 = L (10.171nil = z 7 _7 2 zI 2Z

12 xm n rc +kt r c

The signs on the mass fluxes are changed, Bib + -me and mb ; me because the flow
is outward; then the response function for the nozzle is, for example,

A

e . R n (10.18)

me

The contribution of the nozzle is then

A(r) r

iM[KRr) [(8nll+y8n2 ÷I-R (r))J](1+6 )J' CJ '(ylnr)rdr (10.19)e n+6n2 n +1-Pn ma rno
Mb0

It is likely that the admittance function (in particular the real part) is very
small unless the mode has an axial component of velocity. If, in addition, the
coupling is isentropic, Eq. 10.19 reduces simply to

r
7rM (1+6Mo) (nr)rdr (10.20)

•0e

which represents a loss of wave energy due to convection by the mean flow exhaust-
ing from the chamber.

The next to last term in Eq. 10.1, depending on _u" (i), contributes nothing.
At the burning surface it is zero because the flow leaving the surface may be
assumed to have initially no motion parallel to the surface. At the nozzle en-
trance, there is no contribution because the parallel motions (i.e., normal to
the axis) are continuous through the entrance plane.

Finally, the values of EN2 are given by

c A 2
EN2 = 2rLAm fJJ' (x r)rdr= S r J(Kmnrc) (10.21)
N Mt, 0 m rlnn bs c Krc

5mn c
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Bringing all of the above results together, one has for a:

E (r)2a _UN= + [R~b •(r )+ I ( + 5)(__ +I-R (r)> Am•Jm•nc
ZLZ=+MbSbSL b +(6 t 6 1Y6 )f lRrJ b( r )
a mY mS br

(combustion coupling)

222
+• - m +kOtr 'r ]J- (x r

-"b~sUZ••L + Z7CmNn

(turning of flow at the burning surface)

A(r)-irMe- [R(r) j- _ (,5l+ 8 n)( +!-Rn(r) )

e n y nII~tN6n,. TA
e

r 2 2 2

urn c

(nozzle)

E
2

EN
"d - (10-22)a

(other losses)

Consider the mode reportedly observed by Brownlee and Marble, namely that
for m - 1 and I = n = 0. For the nozzle, 6nlI- 0 and 6ri. = 1 ,while along the
burning surface both 611 and 6b. are non-zero. The Mach number at the nozzle
entrance is found from Eq. 10.5 to be He = 2 (L/rc)Mb. Eventually, Eq. 10.22
can be reduced to

ccrc C1r)+ 1 (6 11+ -- +1 _R~r,))

olr c

(x ý +I ) A (r)dr

-1 I -2 1 ) + 1 1+8 ) -Mdc (10.23)

(58r ) n b

58



__NWC TP 5349

On the stability boundary, a 0, and Eq. 10.23 can be rewritten as

Rb&r)+Rb) I r(aM A~r) ( '
ol c b e

22ir+1)

-611 01 (10.24)

For isentropic flow, Rb(r) = Ab(r)/Mb+ 1 , and if both the nozzle admittance
function and the loss associated with mass addition at the burning surface are
neglected, the Eq. 10.24 reduces to Eq. 24 of Ref. 6; for £ = 0,

d c) 1 (10,25)

Mb olr ab 4olrc

Now o1 rc = . 84, so the second term on the right-hand side of Eq. 10.25

is -. 295. As argued above, and in Ref. 6, losees within the volume are apparent-
ly negligible; but that leaves only viscous damping on the head end as the source
of loss. If one assumes simple laminar shear losses, it turns out that the
first term in Eq. 10.25 is about one-tenth that of the second. Hence, specifica-
tion of the stability boundary comes down to

(r)

- 295 , (10.26)
M.• D

which represents a simple balance between acoustics/combustion coupling and

acoustics/mean flow interactions. Measured values of Ab(r)/Mb , taken from

T-burner data by using Eq. 8.13 for end discs only (Sbe = Sc) are shown in Fig.
10.1 :aken from Ref. 7, for p = 300 psia.

Note that Ab(r) < 0 for frequencies greater than approximately 2000 Hz, which
means that the combustion processes are absorbing energy. The -. 295 is the net
driving effect by the mean flow, shown as the dashed line in Fig. 10.1.

By taking data for several mean pressuras, a plot of the intersettions of
Ab(r)/-b with -. 295 gives, according to Eq. 10.26, the stability boundary shown
in Fig. 10.2. There is clearly a very large difference between this result and
the observations of Brownlee and Marble.

Now suppose Lhat, while An (r) is still zero, the coupling is not isentropic,
and the loss due to turning of the flow is taken into account. Define ARb as
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FIG. 10.1. The Ratio__Abr/Mb for
T--17 Propellant at 300 psig.
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FIG. 10.2. Predicted and Observed Stability Boundaries
Based on the Date of Ref. 5 and 8.
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ARb + 1 (10.27)

Mb

Then Eq. 10.24 leads to

(r)

+ -11 1 611t1+ 12  (10.28)

Mb YaMb Xo1rc 1

If ARb # 0, this may provide a different result for the "predicted" sta ility
boundary. To the present time, measurements of Rb (i.e., T-burner tests with
grains on the lateral boundary) have not been taken, so it is not possible to
determine whether or not the explanation proposed here is adequate to account
for the poor agreement shown in Fig. 10.2. Indeed, another very strong possibil-
ity is that the response of the propellant to the azimuthal acoustic velocity
parallel to the burning surface--i.e., velocity coupling-may be significant.
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APPENDIX A

The problem discussed here seems to be one which has not previously been
treated. It is concerned with the question of representing in general the couplingbetween a surface and an ur-:teady flow, accounting for the fact that the represen-

tation depends on the flow-tield itself. From the analysis of the stability prob-
lems, one firds that the interaction between an acoustic field and a burning sur-face depends en the component of velocity parallel to the surface. When Eq. 6.5b

and 6.12 are inserted in the expressions for the complex wavenumber, one finds

A R- all parallel
-- += r[b AT acoustic velocity (A-)

a

(k 2 k )Er 2

+A R j;O T ''d no parallel (-Ib
-ik f 'fb -2 acoustic velocity (Aib

when only these coupling terms are coissidered.

To motivate the argument, take the Imaginary part of Eq. A-1 to find for the
growth constant

2 nb + ib RAT t'1 dS (A-Za)
ZC dez P

d p
2d.. & i()+uyRLAfr3p tdS (A-2b)

E P

The integrands have the units of velocity; write them respectively as
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A~r)_ 1 ~r)- '(r)(A-3a)U - niýRAT

A~)- (r) (A-3b)

As shown in Sectior- 7, E = 25a 2 ep where is the time-averaged total acoustic
energy in the cham.0er; hence, Eq. A-2a,b can be written

Pel ''~IrdS (A-4a:'

{1$S A (r)dS (A-4b)

Obviously, then, the t .me-averaged rate of work done on the waves by the inter-
actions at an element of surface dS is

S U(r)dS (A-5a)

(rate of work) =

(1 A (r (A.-5b)

It should be emphasized that for each case, the fluctuations {{(r) (Lar) e

normal to the surface; the subscripts denote only that feature, of the unper-
turbed acoustic field, used to distinguish the two limiting cases.

That these different results have been obtained for the coupling in the two
limiting cases implies that the coupling for the general case somehow depends on
the relative orientati-in of the surface element and the local acoustic field, for
this determines what Lhe parallel velocity will be for a given pressure amplitude.
To develop this idea, observe first that however complicated the mode structure
may be, the field in the vicinity of a surface may be approximated locally by a
superposition of incident and reflected waves. Let 8 be tf-e angle between the
normal to the surface and the directions of those waves. It is, of course, the
unperturbed acoustic field near a rigid surface which is of concern here. Sche-
matically, the limiting cases and an arbitrary acoustic mode may be represented
as shown in Fig. A-1. For all parallel velocity, 8 = w/2 and for no parallel
velocity, e = 0. Note that for the unperturbed field, the normal component
u ýi of the velocity is zero.
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ALL PARALLEL
ACOUSTIC - / X '
VELOCITY _T

WAVE TO RIGHT WAVE TO LEFT

NO PARALLEL

ACOUSTIC-

INCIDENT WAVE REFLECTED WAVE

GENERAL _ __Z

ACOUSTIC
MODE

WAVE INCIDENT WAVE INCIDENT
FROM LEFT FROM RIGHT

FIG. A-i. Sketch of Acoustic Modes
in the Vicinity of a Rigid Surface.

Let n and s denote coordinates normal and parallel to the surface as showri.
Then for the wave incident from the left, the incident and ri2lected wavea slay be
represented as

p(4) -iCP1'(s sin 9-n cos t)

u.) =-sincp'(s sin8 - ncose- t)
Is

U. = cos Bep,(s sin 8 - n cos 0 -:t) (A-6)

pr = -pacp'(s sin8 + ncos 6 -at)

u ()= -singcp'(s sin 8+ncos 0-it)rs

u = -cos 9P'(s sin 8 +ncos t -t (A-7)
rn
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Here, subscript i denotes incident, r denotes reflected, and n, s denote the norma
and tangential components of the velocity. There are corresponding formulas for
the wave incident from the right:

(r) - -iir(siO cs -)

ui = sina8'(-s sin60- ncos8@- at)
(r)

P! _p s *in (-s sine0 - ncos 9 -- it)

u. = cos 0 V (-s sin 0 -n cos -lit) (A-8)
in

(r) - p a '-ssin0+ncos 0-it)

u(r) = sin0*'(-s sin 8+ncos -- t
rs

(r)_
Urn cos904'(-s sin O+ncos q _it) (A-9)

The functions CP and P are velocity potentials; the primes denote differentiation
with respect to the argument: e.g., cp' = dcP(z)/dz. (See, for example, Ref. 9,
p. 266.) Note that Eq. A-6, A-7, A-8 and A-9 represent solutions to the unper-
turbed wave equation, satisfying the condition that the velocities normal to the
surface, u(1 ) + u(£) and u(r) + u(r) vanish at the surface (n 0).

in rn in rnNowexan U(i) (£) (£)

Now expand un = uij + urn in Taylor series about the origin, along the
n axis, and retain only the first term:

"( R¢) = ( )+u (I-) = cosOjrp(-ncos8-it)-C(ncos0-at)In f n s=0 In rn ) s=0

a
Scosnn .cp(ncos9_at)_CP(ncose-it)] ;t% _2cos nCPt(-Pt)

Similarly, for the wave incident from the right,

(~r)) _ -Cos ow,,"(-it){N -z~

Thus, the sum of these gives

2 - 71- (A-10)
Cos 0 'c'i.' (C+I+4)
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Here, un/n can be interpreted, since un =0 at n =0, as V.-4, the divergence of
the velocity taken in the d!irction normal to the surface. To see this, note
that ffi n + us and 7 operates only on un.

Similarly, expand the velocity parallel to the surface, Us u= + Urs
and u(r) to find

S

NF =0 S S=0

n:--0

In the limit s ÷ 0, [ns(s)-us(0)]/s can be interpreted as VII-U, so

sin7e = U (A-11)sin- z rcp+*')

It follows from Eq. A-10 and A-ll that

tane = ( (A-12)

where absolute values have been taken to assure, as necessary, that only positive
numbers arise. Then Eq. A-12 implies

Ivil += i- =E H. -- (. 3

= oG= IA(A-.14)
1v7,1- + iV.- I

It may be noted that Eq. A-13 and A-14 are likely not to be the most useful
forms for practical geometries, since generally the pressure field is computed
numerically. However, by using the momentum equation, Vp' = -0 u'/at, one can
write, for example,

1 1 p(6n)-p(O)

.i-W (6n)2

A 1 p(s+6s)-p(s)

(6s)

66



NWC TP 5349

where Sn, 6s are the incremental distances measured in the normal and tangential

directions from the point n = O,s. In this way, the results of a numerical calcu-
lation can be used directly to compute 61 .n3 6"

But now the question to answer is, "how should the limiting cases shown in
Eq. A-1 be combined to give the correct representation for the coupling when e is

neither 0 nor 7r/2?" An appealing guess is that the coupling for no parallel velo-

city should be multiplied by cos26, and that for all parallel velocity by sin2 e.

That this is correct may be demonstrated as follows. First, ov•ing to the ziay in
which the one-dimensional analysis of Sections 2 and 3 is formulated, it is clear

that it is the component of velocity normal to the velocity in the chamber which

matters. For 6 # 0, the proportion sin 6 of the maes flux leaving the surfaze is

normal to the acoustic velocity, and the proportion cos e is parallel to the acous-

tic velocity, as shown in Fig. A-2. Hence, a factor sin 8 should multiply the

fluctuation a (of which the real part appears in Eq. A-3a) or Eq. 6.5b, for the

coupling due with flow parallel to the surface. And, a factor cos 8 must multiply

u or Eq. 6.12.

I / ,,,
/ ~ 1

^%o /M

ttbcOl 7 7 7 77i7 27 7777777 11. If

FIG. A-2. Projections of Velocity Fluctuations Associated
With Mass Addition, and aa Element of Surface Area.

But in addition to weighting the velocity components, the surface areas must
be weighted. For the work done due to coupling with the parallel flow, only the
area dS sin e parallel to the direction of the incident waves is effective, as
indicated in the above sketch. And for the normal flow, the projected area dS
cos e normal to the direction of propagation is involved. Consequently, the total
rate at which work is done is

^~~~ A) (r)P(u f f) sin + * cos 9)&S
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It follows that the two cases shown in Fig. A-i should be combined as

2 2? P- j 2 . 2 R - - 2 2)d
Sjt 

o [ b(cos
a

= ia =? jy~f AT - 6Od (A-15)
a

with 61= sin2e, 6&-- cos 2 e.
A

It must be emphasized that mb and mbAT are normal to the surface. In prac-
tice, these quantities are likely to be expressed as response functinns defined
for the limiting cases. For purposes of illustration, consider pressure coupling
only, end define Rbll, Rbi by

[r•b +_ nMbAT ] = R p all parallel acoustic velocity (A-16)

ba p

'-l [A-, + -Y =, Fn T ] = Rb- no parallel acoustic velocity (A-17)

mb a p

The preceding argument shows that the coupling in general is represented by

AA

R bi sifl6-P + RPbcose8 , (A-18)
p p

and the rate of work done by processes at the element of area dS is

[Rl sin2 B + R 2 ( cos 2 O]('dS . (A-19)

p

The numerical values for RbtI, Rb± are those either calculated or measured for
the appropriate limiting cases. For example, data taken with an end-burning
T-burner should in principle provide Rb.,; and from measurements with a T-burner
having lateral grains, one may be able to determine RbIl. See Section 9 for
additional discussions.
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